Abstract

In this paper, a new modeling approach is proposed to represent the tangential frictional stick-slip behaviors of contact interfaces in mechanical systems considering the surface fractal feature and normal loading conditions. Initially, surrogate asperities are defined to express the fractal feature of contact surface topography and the normal load of interface, and Jenkins elements are used to describe the tangential stick-slip motions between surrogate contact asperities. Then, a geometric series distribution principle of the normal loads at contact asperities is proposed to determine the yield forces of the Jenkins elements. The criterion for identifying the micro- and macro-slips of the contact interfaces is proposed, which are determined by the stick and slip conditions of the largest contact spot. An experimental setup for measuring the frictional stick-slip of contact interfaces is constructed, upon which tangential quasi-static experiments are conducted. Satisfactory agreements between the theoretical and experimental results indicate that the proposed modeling approach can perfectly predict the stick-slip behavior of contact interfaces. Finally, mechanical characteristics of the contact interfaces are investigated in detail by employing the validated modeling approach. Owing to the definite physical significance of the proposed modeling approach, the mechanism of the tangential stick-slip behavior of contact interfaces is partially demonstrated.

References

1.
Padmanabhan
,
K. K.
, and
Murty
,
A. S. R.
,
1991
, “
Damping in Structural Joints Subjected to Tangential Loads
,”
Proc. Inst. Mech. Eng., Part C
,
205
(
2
), pp.
121
129
.
2.
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
,
Resor
,
B. R.
,
Jew
,
M. D.
,
Lauffer
,
J. P.
, and
Ames
,
N. M.
,
2009
,
Handbook on Dynamics of Jointed Structures
,
Sandia National Laboratories
,
Albuquerque, NM
.
3.
Brake
,
M. R. W.
,
2017
,
The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics
,
Springer
,
New York
.
4.
Zhao
,
B.
,
Wu
,
F.
,
Sun
,
K.
,
Mu
,
X.
,
Zhang
,
Y.
, and
Sun
,
Q.
,
2021
, “
Study on Tangential Stiffness Nonlinear Softening of Bolted Joint in Friction-Sliding Process
,”
Tribol. Int.
,
156
(
1
), p.
106856
.
5.
Padmanabhan
,
K. K.
,
1992
, “
Prediction of Damping in Machined Joints
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
305
314
.
6.
Zhang
,
G.
,
Huang
,
Y.
,
Shi
,
W.
, and
Fu
,
W.
,
2003
,
Predicting Dynamic Behaviours of a Whole Machine Tool Structure Based on Computer-Aided Engineering
,”
Int. J. Mach. Tools Manuf.
,
43
(
7
), pp.
699
706
.
7.
Beards
,
C. F.
,
1992
, “
Damping in Structural Joints
,”
Shock Vib. Dig.
,
24
(
7
), pp.
3
7
.
8.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.
9.
Bouc
,
R.
,
1967
, “
Forced Vibrations of Mechanical Systems with Hysteresis
,”
Proceedings of the Fourth Conference on Nonlinear Oscillations
,
Prague, Czech
,
Sept. 5–9
.
10.
Wen
,
Y. K.
,
1989
, “
Method of Random Vibration of Hysteretic Systems
,”
ASCE J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.
11.
Valanis
,
K. C.
,
1978
,
Fundamental Consequences of a new Intrinsic Time Measure, Plasticity as a Limit of the Endochronic Theory
,
Iowa University
,
Iowa City
.
12.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
.
13.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1–2
), pp.
249
276
.
14.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
.
15.
Li
,
Y.
, and
Hao
,
Z.
,
2016
, “
A Six-Parameter Iwan Model and Its Application
,”
Mech. Syst. Signal Process
,
68
, pp.
354
365
.
16.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
17.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
18.
Kogut
,
L.
, and
Jackson
,
R. L.
,
2006
, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
,
128
(
1
), pp.
213
217
.
19.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
20.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
21.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.
22.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
23.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Surface Roughness Effects on Energy Dissipation in Fretting Contact of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
78
(
2
), pp.
856
875
.
24.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
.
25.
Chen
,
J.
,
Zhang
,
J.
,
Hong
,
J.
, and
Zhu
,
L.
,
2019
, “
Modeling Tangential Contact of lap Joints Considering Surface Topography Based on Iwan Model
,”
Tribol. Int.
,
137
(
4
), pp.
66
75
.
26.
Mandelbrot
,
B. B.
,
1983
, “
The Fractal Geometry of Nature
,”
Am. J. Phys.
,
51
(
3
), pp.
286
286
.
27.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1–4
), pp.
169
181
.
28.
Ungar
,
E. E.
,
1973
, “
The Status of Engineering Knowledge Concerning the Damping of Built-Up Structures
,”
J. Sound Vib.
,
26
(
1
), pp.
141
154
.
29.
Segalman
,
D. J.
, and
Starr
,
M. J.
,
2008
, “
Inversion of Masing Models via Continuous Iwan Systems
,”
Int. J. Non-Linear Mech.
,
43
(
1
), pp.
74
80
.
30.
Persson
,
B. N. J.
,
2014
, “
On the Fractal Dimension of Rough Surfaces
,”
Tribol. Lett.
,
54
(
1
), pp.
99
106
.
31.
Jacobs
,
T. D. B.
,
Junge
,
T.
, and
Pastewka
,
L.
,
2017
, “
Quantitative Characterization of Surface Topography Using Spectral Analysis
,”
Surf. Topogr.: Metrol. Prop.
,
5
(
1
), p.
13001
.
32.
Wang
,
X. C.
,
Huang
,
B.
,
Wang
,
R. L.
,
Mo
,
J. L.
, and
Ouyang
,
H.
,
2020
, “
Friction-Induced Stick-Slip Vibration and its Experimental Validation
,”
Mech. Syst. Signal Process
,
142
, p.
106705
.
33.
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
1996
, “
Modelling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method
,”
J. Sound Vib.
,
193
(
2
), pp.
511
523
.
34.
Oldfield
,
M.
,
Ouyang
,
H.
, and
Mottershead
,
J. E.
,
2005
, “
Simplified Models of Bolted Joints Under Harmonic Loading
,”
Comput. Struct.
,
84
(
1–2
), pp.
25
33
.
You do not currently have access to this content.