Abstract

A method is presented for evaluating the axial critical loads and deformed shapes of a Vierendeel periodic girder. They are obtained by solving the large-deflections equilibrium problem of a micro-polar equivalent model. The elastic properties of this model have been derived from those of an ideal girder whose cells may deform only according to the inner forces transferring modes of the unit cell. In particular, the strain energy density of the equivalent medium is obtained by evaluating the limit of the girder elastic energy for the cell to girder size ratio tending to zero. To solve the Engesser/Haringx discord, the large-deflections equilibrium equations are deduced by the virtual work principle, without any a priori assumption on the shear force. For this aim, also the external work of the substitute medium is evaluated by the same procedure as the strain energy density. Actually, it is first written for the ideal girder under the assumption of negligibility of the axial effects at the cell scale and then specialized for the continuous medium by examining the limit value for cell to girder size ratio going to zero. Closed form solutions for the critical deformed shapes are given, together with an accurate formula for the girder buckling load.

References

1.
De Iorio
,
A.
,
Grasso
,
M.
,
Penta
,
F.
,
Pucillo
,
G. P.
,
Pinto
,
P.
,
Rossi
,
S.
,
Testa
,
M.
, and
Farneti
,
G.
,
2014
, “
Transverse Strength of Railway Tracks: Part 1. Planning and Experimental Setup
,”
Frattura ed Integrità Strutturale
,
8
(
30
), pp.
478
485
.
2.
De Iorio
,
A.
,
Grasso
,
M.
,
Penta
,
F.
,
Pucillo
,
G. P.
, and
Rosiello
,
V.
,
2014
, “
Transverse Strength of Railway Tracks: Part 2. Test System for Ballast Resistance in Line Measurement
,”
Frattura ed Integrità Strutturale
,
8
(
30
), pp.
578
592
.
3.
De Iorio
,
A.
,
Grasso
,
M.
,
Penta
,
F.
,
Pucillo
,
G. P.
,
Rosiello
,
V.
,
Lisi
,
S.
,
Rossi
,
S.
, and
Testa
,
M.
,
2014
, “
Transverse Strength of Railway Tracks: Part 3. Multiple Scenarios Test Field
,”
Frattura ed Integrità Strutturale
,
8
(
30
), pp.
593
601
.
4.
De Iorio
,
A.
,
Grasso
,
M.
,
Penta
,
F.
,
Pucillo
,
G. P.
,
Rossi
,
S.
, and
Testa
,
M.
,
2018
, “
On the Ballast-Sleeper Interaction in the Longitudinal and Lateral Directions
,”
Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit.
,
232
(
2
), pp.
620
631
.
5.
Gesualdo
,
A.
, and
Penta
,
F.
,
2018
, “
A Model for the Mechanical Behaviour of the Railway Track in the Lateral Plane
,”
Int. J. Mech. Sci.
,
146–147
, pp.
303
318
.
6.
Grissom
,
G. T.
, and
Kerr
,
A. D.
,
2006
, “
Analysis of Lateral Track Buckling Using New Frame-Type Equations
,”
Int. J. Mech. Sci.
,
48
(
1
), pp.
21
32
.
7.
Lim
,
N.-H.
,
Park
,
N.-H.
, and
Kang
,
Y.-J.
,
2003
, “
Stability of Continuous Welded Rail Track
,”
Comput. Struct.
,
81
(
22–23
), pp.
2219
2236
.
8.
Malhas
,
F.
,
2008
,
Steel Structures-Design and Behavior: International Edition
,
Pearson Education
,
Upper Saddle River, NJ
.
9.
Tej
,
P.
, and
Tejova
,
A.
,
2014
, “
Design of an Experimental Prestressed Vierendeel Pedestrian Bridge Made of UHPC
,”
App. Mech. Mater.
,
587–589
, pp.
1642
1645
.
10.
Nakayama
,
Y.
,
1985
, “
Aerodynamic Stability of Cable-Stayed Bridge With New Vierendeel-Type Girder
,”
Eng. Struct.
,
7
(
2
), pp.
85
92
.
11.
Noor
,
A. K.
, and
Hampton
,
V.
,
1983
, “
Assessment of Current State-of-the-Art in Modeling Techniques and Analysis Methods for Large Space Structures
,”
Modeling, Analysis and Optimization Issues for Large Space Structures – NASA Conference Publication 2258
,
Williamsburg, VA
,
May 13–14, 1982
, pp.
5
32
.
12.
Cao
,
J.
,
Grenestedt
,
J. L.
, and
Maroun
,
W. J.
,
2007
, “
Steel Truss/Composite Skin Hybrid Ship Hull. Part I: Design and Analysis
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
7
), pp.
1755
1762
.
13.
Romanoff
,
J.
, and
Varsta
,
P.
,
2007
, “
Bending Response of Web-Core Sandwich Plates
,”
Compos. Struct.
,
81
(
2
), pp.
292
302
.
14.
Romanoff
,
J.
,
Varsta
,
P.
, and
Klanac
,
A.
,
2007
, “
Stress Analysis of Homogenized Web-Core Sandwich Beams
,”
Compos. Struct.
,
79
(
3
), pp.
411
422
.
15.
Cedolin
,
L.
, et al
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
,
Singapore
.
16.
Gjelsvik
,
A.
,
1991
, “
Stability of Built-up Columns
,”
J. Eng. Mech.
,
117
(
6
), pp.
1331
1345
.
17.
Karttunen
,
A. T.
,
Reddy
,
J.
, and
Romano
,
J.
,
2018
, “
Micropolar Modeling Approach for Periodic Sandwich Beams
,”
Compos. Struct.
,
185
, pp.
656
664
.
18.
Goncalves
,
B. R.
,
Karttunen
,
A.
,
Romano
,
J.
, and
Reddy
,
J.
,
2017
, “
Buckling and Free Vibration of Shear-Flexible Sandwich Beams Using a Couple-Stress-Based Finite Element
,”
Compos. Struct.
,
165
, pp.
233
241
.
19.
Romanoff
,
J.
,
Reddy
,
J. N.
, and
Jelovica
,
J.
,
2016
, “
Using Non-local Timoshenko Beam Theories for Prediction of Micro- and Macro-Structural Responses
,”
Compos. Struct.
,
156
, pp.
410
420
(70th Anniversary of Professor J. N. Reddy).
20.
Noor
,
A. K.
,
1988
, “
Continuum Modeling for Repetitive Lattice Structures
,”
ASME Appl. Mech. Rev.
,
41
(
7
), p.
285
.
21.
Bazant
,
Z.
, and
Christensen
,
M.
,
1972
, “
Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress
,”
Int. J. Solids Struct.
,
8
(
3
), pp.
327
346
.
22.
Trovalusci
,
P.
, and
Pau
,
A.
,
2014
, “
Derivation of Microstructured Continua From Lattice Systems Via Principle of Virtual Works: The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua
,”
Acta Mech.
,
225
(
1
), pp.
157
177
.
23.
Mora
,
R.
, and
Waas
,
A.
,
2007
, “
Evaluation of the Micropolar Elasticity Constants for Honeycombs
,”
Acta Mech.
,
192
(
1–4
), p.
1
.
24.
Onck
,
P. R.
,
2002
, “
Cosserat Modeling of Cellular Solids
,”
Comptes Rendus Mecanique
,
330
(
11
), pp.
717
722
.
25.
Martinsson
,
P.-G.
, and
Babuska
,
I.
,
2007
, “
Mechanics of Materials With Periodic Truss or Frame Micro-structures
,”
Arch. Rational Mech. Anal.
,
185
(
2
), pp.
201
234
.
26.
Dos Reis
,
F.
, and
Ganghoffer
,
J.
,
2012
, “
Construction of Micropolar Continua From the Asymptotic Homogenization of Beam Lattices
,”
Comput. Struct.
,
112
, pp.
354
363
.
27.
Trovalusci
,
P.
,
Ostoja-Starzewski
,
M.
,
De Bellis
,
M. L.
, and
Murrali
,
A.
,
2015
, “
Scale Dependent Homogenization of Random Composites as Micropolar Continua
,”
Eur. J. Mech. A/Solids
,
49
, pp.
396
407
.
28.
Hasanyan
,
A. D.
, and
Waas
,
A. M.
,
2016
, “
Micropolar Constitutive Relations for Cellular Solids
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041001
.
29.
Noor
,
A. K.
, and
Weisstein
,
L. S.
,
1981
, “
Stability of Beamlike Lattice Trusses
,”
Comput. Methods Appl. Mech. Eng.
,
25
(
2
), pp.
179
193
.
30.
Ma
,
H.
,
Gao
,
X.-L.
, and
Reddy
,
J.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3379
3391
.
31.
Reddy
,
J.
,
2011
, “
Microstructure-Dependent Couple Stress Theories of Functionally Graded Beams
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2382
2399
.
32.
Karttunen
,
A. T.
,
Romanoff
,
J.
, and
Reddy
,
J. N.
,
2016
, “
Exact Microstructure-Dependent Timoshenko Beam Element
,”
Int. J. Mech. Sci.
,
111–112
, pp.
35
42
.
33.
Reinaldo Goncalves
,
B.
,
Karttunen
,
A.
, and
Romanoff
,
J.
,
2019
, “
A Nonlinear Couple Stress Model for Periodic Sandwich Beams
,”
Compos. Struct.
,
212
, pp.
586
597
.
34.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
35.
Arbind
,
A.
, and
Reddy
,
J.
,
2013
, “
Nonlinear Analysis of Functionally Graded Microstructure-Dependent Beams
,”
Compos. Struct.
,
98
, pp.
272
281
.
36.
Penta
,
F.
,
2020
, “
Buckling Analysis of Periodic Vierendeel Beams by a Micro-Polar Homogenized Model
,”
Acta Mechanica
,
231
, pp.
2399
2424
.
37.
Ziegler
,
H.
,
1982
, “
Arguments for and Against Engesser’s Buckling Formulas
,”
Arch. Appl. Mech.
,
52
, pp.
105
113
.
38.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1963
,
Theory of Elastic Stability
,
McGraw-Hill
,
London
.
39.
Bazant
,
Z. P.
,
1963
, “
Shear Buckling of Sandwich. Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
75
83
.
40.
Bazant
,
Z. P.
, and
Beghini
,
A.
,
2004
, “
Sandwich Buckling Formulas and Applicability of Standard Computational Algorithm for Finite Strain
,”
Compos. Part B
,
35
(
6–8
), pp.
573
581
.
41.
Bazant
,
Z. P.
, and
Beghini
,
A.
,
2006
, “
Stability and Finite Strain of Homogenized Structures Soft in Shear: Sandwich or Fiber Composites, and Layered Bodies
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1571
1593
.
42.
Attard
,
M. M.
, and
Hunt
,
G. W.
,
2008
, “
Column Buckling With Shear Deformations—A Hyperelastic Formulation
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4322
4339
.
43.
Attard
,
M. M.
, and
Hunt
,
G. W.
,
2008
, “
Sandwich Column Buckling—A Hyperelastic Formulation
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5540
5555
.
44.
Blaauwendraad
,
J.
,
2010
, “
Shear in Structural Stability: On the Engesser–Haringx Discord
,”
J. Appl. Mech.
,
77
(
3
), p.
031005
.
45.
Li
,
X. F.
, and
Lee
,
K. Y.
,
2018
, “
Effects of Engesser’s and Haringx’s Hypotheses on Buckling of Timoshenko and Higher-Order Shear-Deformable Columns
,”
J. Eng. Mech.
,
144
(
1
), p.
04017150
.
46.
Penta
,
F.
,
Monaco
,
M.
,
Pucillo
,
G. P.
, and
Gesualdo
,
A.
,
2017
, “
Periodic Beam-Like Structures Homogenization by Transfer Matrix Eigen-Analysis: A Direct Approach
,”
Mech. Res. Commun.
,
85
, pp.
81
88
.
47.
Stephen
,
N.
, and
Wang
,
P.
,
1996
, “
On Saint-Venant’s Principle in Pin-Jointed Frameworks
,”
Int. J. Solids Struct.
,
33
(
1
), pp.
79
97
.
48.
Stephen
,
N.
, and
Wang
,
P.
,
2000
, “
On Transfer Matrix Eigenanalysis of Pinjointed Frameworks
,”
Comput. Struct.
,
78
(
4
), pp.
603
615
.
You do not currently have access to this content.