Abstract

The anisotropic elastic mechanical properties of a family of single material chiral mechanical metamaterials are explored systematically. An integrated monoclinic-micropolar constitutive model is developed to quantify the anisotropic mechanical properties of the chiral designs with different geometries. The model predictions are thoroughly verified by mechanical experiments on three-dimensional (3D) printed specimens and finite element simulations with periodic boundary conditions. The new integrated monoclinic-micropolar model can predict the anisotropic elastic properties in all directions. Normalized model parameters for this family of chiral designs are provided. Finally, the anisotropic effective stiffness and effective Poisson’s ratio of all geometric designs in this family are quantified. The anisotropy and the completeness of auxeticity are evaluated systematically.

References

1.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
2.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
221
(
4
), pp.
565
575
.
3.
Evans
,
K. E.
,
1991
, “
Auxetic Polymers: A New Range of Materials
,”
Endeavour
,
15
(
4
), pp.
170
174
.
4.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking!
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
.
5.
Wang
,
F.
,
2018
, “
Systematic Design of 3D Auxetic Lattice Materials With Programmable Poisson’s Ratio for Finite Strains
,”
J. Mech. Phys. Solids
,
114
, pp.
303
318
.
6.
Evans
,
K. E.
,
Nkansah
,
M. A.
,
Hutchinson
,
I. J.
, and
Rogers
,
S. C.
,
1991
, “
Molecular Network Design
,”
Nature
,
353
(
6340
), pp.
124
124
.
7.
Grima
,
J. N.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2005
, “
Auxetic Behaviour From Rotating Rigid Units
,”
Phys. Status Solidi
,
242
(
3
), pp.
561
575
.
8.
Smith
,
C. W.
,
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
A Novel Mechanism for Generating Auxetic Behaviour in Reticulated Foams: Missing Rib Foam Model
,”
Acta Mater.
,
48
(
17
), pp.
4349
4356
.
9.
Gaspar
,
N.
,
Ren
,
X. J.
,
Smith
,
C. W.
,
Grima
,
J. N.
, and
Evans
,
K. E.
,
2005
, “
Novel Honeycombs With Auxetic Behaviour
,”
Acta Mater.
,
53
(
8
), pp.
2439
2445
.
10.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
16
), pp.
5978
5983
.
11.
Milton
,
G. W.
,
2013
, “
Complete Characterization of the Macroscopic Deformations of Periodic Unimode Metamaterials of Rigid Bars and Pivots
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1543
1560
.
12.
Cabras
,
L.
, and
Brun
,
M.
,
2014
, “
Auxetic Two-Dimensional Lattices with Poisson's Ratio Arbitrarily Close to −1
,”
Proc. R. Soc. A
,
470
(
2172
), p.
20140538
.
13.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
4810
.
14.
Ting
,
T. C. T.
, and
Barnett
,
D. M.
,
2005
, “
Negative Poisson’s Ratios in Anisotropic Linear Elastic Media
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
929
931
.
15.
Cabras
,
L.
, and
Brun
,
M.
,
2016
, “
A Class of Auxetic Three-Dimensional Lattices
,”
J. Mech. Phys. Solids
,
91
, pp.
56
72
.
16.
Biswas
,
R.
,
Poh
,
L. H.
, and
Shedbale
,
A. S.
,
2020
, “
A Micromorphic Computational Homogenization Framework for Auxetic Tetra-Chiral Structures
,”
J. Mech. Phys. Solids
,
135
, p.
103801
.
17.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.
18.
Shan
,
S.
,
Kang
,
S. H.
,
Zhao
,
Z.
,
Fang
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Design of Planar Isotropic Negative Poisson’s Ratio Structures
,”
Extreme Mech. Lett.
,
4
, pp.
96
102
.
19.
Fernandes
,
M. C.
,
Aizenberg
,
J.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2021
, “
Mechanically Robust Lattices Inspired by Deep-Sea Glass Sponges
,”
Nat. Mater.
,
20
(
2
), pp.
237
241
.
20.
Ning
,
X.
,
Yu
,
X.
,
Wang
,
H.
,
Sun
,
R.
,
Corman
,
R. E.
,
Li
,
H.
,
Lee
,
C. M.
, et al
,
2018
, “
Mechanically Active Materials in Three-Dimensional Mesostructures
,”
Sci. Adv.
,
4
(
9
), p.
eaat8313
.
21.
Chen
,
Y.
,
Liu
,
X.
, and
Hu
,
G.
,
2014
, “
Micropolar Modeling of Planar Orthotropic Rectangular Chiral Lattices
,”
C. R. Méc.
,
342
(
5
), pp.
273
283
.
22.
Bahaloo
,
H.
, and
Li
,
Y.
,
2019
, “
Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041002
.
23.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2012
, “
Elasto-static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
156
171
.
24.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and its Application to Chiral Lattices
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1907
1921
.
25.
Duan
,
S.
,
Wen
,
W.
, and
Fang
,
D.
,
2018
, “
A Predictive Micropolar Continuum Model for a Novel Three-Dimensional Chiral Lattice with Size Effect and Tension-Twist Coupling Behavior
,”
J. Mech. Phys. Solids
,
121
, pp.
23
46
.
26.
Chen
,
Y.
,
Frenzel
,
T.
,
Guenneau
,
S.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2020
, “
Mapping Acoustical Activity in 3D Chiral Mechanical Metamaterials Onto Micropolar Continuum Elasticity
,”
J. Mech. Phys. Solids
,
137
, p.
103877
.
27.
Jiang
,
Y.
, and
Li
,
Y.
,
2017
, “
3D Printed Chiral Cellular Solids With Amplified Auxetic Effects Due to Elevated Internal Rotation
,”
Adv. Eng. Mater.
,
19
(
2
), p.
1600609
.
28.
Jiang
,
Y.
, and
Li
,
Y.
,
2018
, “
3D Printed Auxetic Mechanical Metamaterial With Chiral Cells and Re-entrant Cores
,”
Sci. Rep.
,
8
(
1
), p.
2397
.
29.
Jiang
,
Y.
, and
Li
,
Y.
,
2018
, “
Novel 3D-Printed Hybrid Auxetic Mechanical Metamaterial With Chirality-Induced Sequential Cell Opening Mechanisms
,”
Adv. Eng. Mater.
,
20
(
2
), p.
1700744
.
30.
Fernandez-Corbaton
,
I.
,
Rockstuhl
,
C.
,
Ziemke
,
P.
,
Gumbsch
,
P.
,
Albiez
,
A.
,
Schwaiger
,
R.
,
Frenzel
,
T.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2019
, “
New Twists of 3D Chiral Metamaterials
,”
Adv. Mater.
,
31
(
26
), p.
1807742
.
31.
Wen
,
L.
,
Pan
,
F.
, and
Ding
,
X.
,
2020
, “
Tensegrity Metamaterials for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), p.
eabd9158
.
32.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson's Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
33.
Ruan
,
X.
,
Yuan
,
W.
,
Hu
,
Y.
,
Li
,
J.
,
Wu
,
W.
, and
Xia
,
R.
,
2020
, “
Chiral Constrained Stent: Effect of Structural Design on the Mechanical and Intravascular Stent Deployment Performances
,”
Mech. Mater.
,
148
, p.
103509
.
34.
Li
,
T.
,
Chen
,
Y.
,
Hu
,
X.
,
Li
,
Y.
, and
Wang
,
L.
,
2018
, “
Exploiting Negative Poisson's Ratio to Design 3D-Printed Composites With Enhanced Mechanical Properties
,”
Mater. Des.
,
142
, pp.
247
258
.
35.
Li
,
T.
,
Liu
,
F.
, and
Wang
,
L.
,
2020
, “
Enhancing Indentation and Impact Resistance in Auxetic Composite Materials
,”
Composites, Part B
,
198
, p.
108229
.
You do not currently have access to this content.