Abstract

For a long time, geomechanicians have used scratch tests to characterize the compressive behavior and hardness of rocks. In recent years, this test has regained popularity in the field of mechanics, especially after a series of publications that highlighted the potential capability of the scratch test to determine the fracture properties of quasi-brittle materials. However, the complex failure mechanisms observed experimentally in scratch tests led to scientific debates and, in particular, raised the question of the size effect. This article intends to provide a better understanding of the problem by using numerical tools and fracture mechanics considerations. To narrow the investigation area, this study focuses on slab scratch tests of quasi-brittle materials and adopts two different numerical methods: (i) the lattice discrete particle model (LDPM) that includes constitutive laws for cohesive fracturing, frictional shearing, and nonlinear compressive behavior, and (ii) the meshless method based on Shepard function and partition of unity (MSPU) implementing linear elastic fracture mechanics (LEFM). The numerical results are further analyzed through Bažant’s size effect law (SEL) with an appropriate mixed-mode fracture criterion. Fracture properties are then calculated and compared to the results of typical notched three-point bending tests. The results show that mixed-mode fracture considerations are of paramount importance in analyzing the fracture process and size effect of scratch tests.

References

1.
Nishimatsu
,
Y.
,
1972
, “
The Mechanics of Rock Cutting
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
,
9
(
2
), pp.
261
270
. 10.1016/0148-9062(72)90027-7
2.
Glowka
,
D. A.
,
1989
, “
Use of Single-Cutter Data in the Analysis of PDC Bit Designs: Part 1–Development of a PDC Cutting Force Model
,”
J. Petrol. Technol.
,
41
(
08
), pp.
797
849
. 10.2118/15619-PA
3.
Richard
,
T.
,
1999
, “
Determination of Rock Strength From Cutting Tests
,” Ph.D. thesis,
University of Minnesota
,
Minneapolis, MN
.
4.
Richard
,
T.
,
Dagrain
,
F.
,
Poyol
,
E.
, and
Detournay
,
E.
,
2012
, “
Rock Strength Determination From Scratch Tests
,”
Eng. Geology
,
147
, pp.
91
100
. 10.1016/j.enggeo.2012.07.011
5.
Zhou
,
Y.
, and
Lin
,
J.-S.
,
2013
, “
On the Critical Failure Mode Transition Depth for Rock Cutting
,”
Int. J. Rock Mech. Mining Sci.
,
62
, pp.
131
137
. 10.1016/j.ijrmms.2013.05.004
6.
Adler
,
T. A.
, and
Walters
,
R. P.
,
1993
, “
Wear and Scratch Hardness of 304 Stainless Steel Investigated With a Single Scratch Test
,”
Wear
,
162
, pp.
713
720
. 10.1016/0043-1648(93)90071-S
7.
Wredenberg
,
F.
, and
Larsson
,
P.-L.
,
2009
, “
Scratch Testing of Metals and Polymers: Experiments and Numerics
,”
Wear
,
266
(
1–2
), pp.
76
83
. 10.1016/j.wear.2008.05.014
8.
Briscoe
,
B. J.
,
Evans
,
P. D.
,
Pellilo
,
E.
, and
Sinha
,
S. K.
,
1996
, “
Scratching Maps for Polymers
,”
Wear
,
200
(
1–2
), pp.
137
147
. 10.1016/S0043-1648(96)07314-0
9.
Bucaille
,
J.-L.
,
Gauthier
,
C.
,
Felder
,
E.
, and
Schirrer
,
R.
,
2006
, “
The Influence of Strain Hardening of Polymers on the Piling-Up Phenomenon in Scratch Tests: Experiments and Numerical Modelling
,”
Wear
,
260
(
7–8
), pp.
803
814
. 10.1016/j.wear.2005.04.007
10.
Lafaye
,
S.
,
Gauthier
,
C.
, and
Schirrer
,
R.
,
2008
, “
Analyzing Friction and Scratch Tests Without In Situ Observation
,”
Wear
,
265
(
5–6
), pp.
664
673
. 10.1016/j.wear.2007.12.005
11.
Ollendorf
,
H.
, and
Schneider
,
D.
,
1999
, “
A Comparative Study of Adhesion Test Methods for Hard Coatings
,”
Surf. Coat. Technol.
,
113
(
1–2
), pp.
86
102
. 10.1016/S0257-8972(98)00827-5
12.
Gonczy
,
S. T.
, and
Randall
,
N.
,
2005
, “
An Astm Standard for Quantitative Scratch Adhesion Testing of Thin, Hard Ceramic Coatings
,”
Int. J. Appl. Ceramic Technol.
,
2
(
5
), pp.
422
428
. 10.1111/j.1744-7402.2005.02043.x
13.
Bull
,
S.
, and
Berasetegui
,
E.
,
2006
, “
An Overview of the Potential of Quantitative Coating Adhesion Measurement by Scratch Testing
,”
Tribol. Int.
,
39
(
2
), pp.
99
114
. 10.1016/j.triboint.2005.04.013
14.
Li
,
J.
, and
Beres
,
W.
,
2007
, “
Scratch Test for Coating/Substrate Systems—A Literature Review
,”
Can. Metall. Q.
,
46
(
2
), pp.
155
173
. 10.1179/cmq.2007.46.2.155
15.
Akono
,
A.-T.
,
2016
, “
Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing
,”
J. Nanomech. Micromech.
,
6
(
2
), p.
04016001
. 10.1061/(ASCE)NM.2153-5477.0000105
16.
Le
,
J.-L.
, and
Detournay
,
E.
,
2016
, “
Discussion on the “Fracture Mechanics Interpretation of the Scratch Test” by Akono et al.
,”
Eng. Fract. Mech.
,
168
, pp.
46
50
. 10.1016/j.engfracmech.2016.09.010
17.
Bull
,
S.
,
1991
, “
Failure Modes in Scratch Adhesion Testing
,”
Surf. Coat. Technol.
,
50
(
1
), pp.
25
32
. 10.1016/0257-8972(91)90188-3
18.
Zhou
,
W.
,
He
,
Y.
, and
Lu
,
X.
,
2015
, “
Acoustic Emission in Scratch Processes of Metals
,”
Insight-Non-Destruct. Testing Cond. Monitoring
,
57
(
11
), pp.
635
642
. 10.1784/insi.2015.57.11.635
19.
Akono
,
A.-T.
, and
Ulm
,
F.-J.
,
2014
, “
An Improved Technique for Characterizing the Fracture Toughness via Scratch Test Experiments
,”
Wear
,
313
(
1–2
), pp.
117
124
. 10.1016/j.wear.2014.02.015
20.
Huang
,
H.
, and
Detournay
,
E.
,
2008
, “
Intrinsic Length Scales in Tool-Rock Interaction
,”
Int. J. Geomech.
,
8
(
1
), pp.
39
44
. 10.1061/(ASCE)1532-3641(2008)8:1(39)
21.
Huang
,
H.
,
Lecampion
,
B.
, and
Detournay
,
E.
,
2013
, “
Discrete Element Modeling of Tool-Rock Interaction I: Rock Cutting
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
13
), pp.
1913
1929
. 10.1002/nag.2113
22.
Cheng
,
Z.
,
Sheng
,
M.
,
Li
,
G.
,
Huang
,
Z.
,
Wu
,
X.
,
Zhu
,
Z.
, and
Yang
,
J.
,
2018
, “
Imaging the Formation Process of Cuttings: Characteristics of Cuttings and Mechanical Specific Energy in Single Pdc Cutter Tests
,”
J. Petrol. Sci. Eng.
,
171
, pp.
854
862
. 10.1016/j.petrol.2018.07.083
23.
He
,
X.
, and
Xu
,
C.
,
2016
, “
Specific Energy as an Index to Identify the Critical Failure Mode Transition Depth in Rock Cutting
,”
Rock Mech. Rock Eng.
,
49
(
4
), pp.
1461
1478
. 10.1007/s00603-015-0819-6
24.
Doshvarpassand
,
S.
,
Richard
,
T.
, and
Mostofi
,
M.
,
2017
, “
Effect of Groove Geometry and Cutting Edge in Rock Cutting
,”
J. Petroleum Sci. Eng.
,
151
, pp.
1
12
. 10.1016/j.petrol.2017.01.023
25.
Bésuelle
,
P.
,
Desrues
,
J.
, and
Raynaud
,
S.
,
2000
, “
Experimental Characterisation of the Localisation Phenomenon Inside a Vosges Sandstone in a Triaxial Cell
,”
Int. J. Rock Mech. Mining Sci.
,
37
(
8
), pp.
1223
1237
. 10.1016/S1365-1609(00)00057-5
26.
Lin
,
J.-S.
, and
Zhou
,
Y.
,
2013
, “
Can Scratch Tests Give Fracture Toughness?
,”
Eng. Fract. Mech.
,
109
, pp.
161
168
. 10.1016/j.engfracmech.2013.06.002
27.
Jaime
,
M. C.
,
Zhou
,
Y.
,
Lin
,
J.-S.
, and
Gamwo
,
I. K.
,
2015
, “
Finite Element Modeling of Rock Cutting and Its Fragmentation Process
,”
Int. J. Rock Mech. Mining Sci.
,
80
, pp.
137
146
. 10.1016/j.ijrmms.2015.09.004
28.
Detournay
,
E.
, and
Defourny
,
P.
,
1992
, “
A Phenomenological Model for the Drilling Action of Drag Bits
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
,
29
(
1
), pp.
13
23
. 10.1016/0148-9062(92)91041-3
29.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
5
), p.
A168
.
30.
Atkins
,
A.
,
2003
, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
,
45
(
2
), pp.
373
396
. 10.1016/S0020-7403(03)00040-7
31.
Atkins
,
A.
,
2005
, “
Toughness and Cutting: a New Way of Simultaneously Determining Ductile Fracture Toughness and Strength
,”
Eng. Fract. Mech.
,
72
(
6
), pp.
849
860
. 10.1016/j.engfracmech.2004.07.014
32.
Astakhov
,
V. P.
,
2005
, “
On the Inadequacy of the Single-Shear Plane Model of Chip Formation
,”
Int. J. Mech. Sci.
,
47
(
11
), pp.
1649
1672
. 10.1016/j.ijmecsci.2005.07.002
33.
Patel
,
Y.
,
Blackman
,
B.
, and
Williams
,
J.
,
2009
, “
Determining Fracture Toughness From Cutting Tests on Polymers
,”
Eng. Fract. Mech.
,
76
(
18
), pp.
2711
2730
. 10.1016/j.engfracmech.2009.07.019
34.
Williams
,
J.
,
Patel
,
Y.
, and
Blackman
,
B.
,
2010
, “
A Fracture Mechanics Analysis of Cutting and Machining
,”
Eng. Fract. Mech.
,
77
(
2
), pp.
293
308
. 10.1016/j.engfracmech.2009.06.011
35.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP. Ann.
,
62
(
2
), pp.
695
718
. 10.1016/j.cirp.2013.05.006
36.
Cherepanov
,
G.
,
1986
, “
Theory of Rock Cutting
,”
Strength Mater.
,
18
(
8
), pp.
1103
1114
. 10.1007/BF01525361
37.
Cherepanov
,
A.
, and
Cherepanov
,
G.
,
1990
, “
Cutting Resistance of Rocks
,”
Strength Mater.
,
22
(
11
), pp.
1626
1645
. 10.1007/BF00767151
38.
Cherepanov
,
G.
,
1967
, “
The Propagation of Cracks in a Continuous Medium
,”
J. Appl. Math. Mech.
,
31
(
3
), pp.
503
512
. 10.1016/0021-8928(67)90034-2
39.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
40.
Akono
,
A.-T.
, and
Ulm
,
F.-J.
,
2011
, “
Scratch Test Model for the Determination of Fracture Toughness
,”
Eng. Fract. Mech.
,
78
(
2
), pp.
334
342
. 10.1016/j.engfracmech.2010.09.017
41.
Akono
,
A.-T.
,
Reis
,
P. M.
, and
Ulm
,
F. J.
,
2011
, “
Scratching as a Fracture Process: From Butter to Steel
,”
Phys. Rev. Lett.
,
106
(
20
), pp.
204302
. 10.1103/PhysRevLett.106.204302
42.
Akono
,
A.-T.
,
Randall
,
N. X.
, and
Ulm
,
F.-J.
,
2012
, “
Experimental Determination of the Fracture Toughness via Microscratch Tests: Application to Polymers, Ceramics, and Metals
,”
J. Mater. Res.
,
27
(
2
), pp.
485
493
. 10.1557/jmr.2011.402
43.
Akono
,
A.-T.
, and
Ulm
,
F.-J.
,
2012
, “
Fracture Scaling Relations for Scratch Tests of Axisymmetric Shape
,”
J. Mech. Phys. Solids.
,
60
(
3
), pp.
379
390
. 10.1016/j.jmps.2011.12.009
44.
Akono
,
A.-T.
,
Ulm
,
F.-J.
, and
Bažant
,
Z. P.
,
2014
, “
Discussion: Strength-to-Fracture Scaling in Scratching
,”
Eng. Fract. Mech.
,
119
, pp.
21
28
. 10.1016/j.engfracmech.2014.02.025
45.
Kabir
,
P.
,
Ulm
,
F.-J.
, and
Akono
,
A.-T.
,
2017
, “
Rate-Independent Fracture Toughness of Gray and Black Kerogen-Rich Shales
,”
Acta Geotech.
,
12
(
6
), pp.
1207
1227
. 10.1007/s11440-017-0562-0
46.
Lin
,
J.-S.
, and
Zhou
,
Y.
,
2015
, “
Rebuttal: Shallow Wide Groove Scratch Tests Do Not Give Fracture Toughness
,”
Eng. Fract. Mech.
,
133
, pp.
211
222
. 10.1016/j.engfracmech.2014.10.030
47.
Akono
,
A.-T.
, and
Bouché
,
G. A.
,
2016
, “
Rebuttal: Shallow and Deep Scratch Tests as Powerful Alternatives to Assess the Fracture Properties of Quasi-Brittle Materials
,”
Eng. Fract. Mech.
,
158
, pp.
23
38
. 10.1016/j.engfracmech.2016.02.010
48.
Hubler
,
M. H.
, and
Ulm
,
F.-J.
,
2016
, “
Size-Effect Law for Scratch Tests of Axisymmetric Shape
,”
J. Eng. Mech.
,
142
(
12
), pp.
04016094
. 10.1061/(ASCE)EM.1943-7889.0001159
49.
Zhou
,
Y.
,
2017
, “
Discussion on the Interpretation of Scratch Tests With Size Effect Law
,”
Eng. Fract. Mech.
,
100
, pp.
178
183
. 10.1016/j.engfracmech.2016.11.028
50.
Akono
,
A. T.
,
2017
, “
Reply to “Discussion on the Fracture Mechanics Interpretation of the Scratch Test by Akono et al.”
,”
Eng. Fract. Mech.
,
178
, pp.
14
21
. 10.1016/j.engfracmech.2017.04.004
51.
Akono
,
A.-T.
, and
Kabir
,
P.
,
2019
, “
Influence of Geochemistry on Toughening Behavior of Organic-Rich Shale
,”
Acta Geotech.
,
14
(
4
), pp.
1129
1142
. 10.1007/s11440-018-0715-9
52.
Zhou
,
Y.
,
2017
, “
Misinterpretation of Friction as Fracture in Shallow Scratch Tests With Classical and Universal Size Effect Laws
,”
Eng. Fract. Mech.
,
184
, pp.
14
21
. 10.1016/j.engfracmech.2017.08.016
53.
Liu
,
H.
,
Kou
,
S.
, and
Lindqvist
,
P.-A.
,
2002
, “
Numerical Simulation of the Fracture Process in Cutting Heterogeneous Brittle Material
,”
Int. J. Numer. Analytical Methods Geomech.
,
26
(
13
), pp.
1253
1278
. 10.1002/nag.243
54.
Li
,
X.
,
Wang
,
S.
,
Ge
,
S.
,
Malekian
,
R.
, and
Li
,
Z.
,
2017
, “
Numerical Simulation of Rock Fragmentation During Cutting by Conical Picks Under Confining Pressure
,”
Comptes Rendus Mécanique
,
345
(
12
), pp.
890
902
. 10.1016/j.crme.2017.09.004
55.
Lei
,
S.
,
Kaitkay
,
P.
, and
Shen
,
X.
,
2004
, “
Simulation of Rock Cutting Using Distinct Element Method-pfc2d
,”
Num. Model. Micromech. via Particle Methods
,
1
, pp.
63
72
.
56.
Rojek
,
J.
,
2007
, “
Discrete Element Modelling of Rock Cutting
,”
Comput. Methods Mater. Sci.
,
7
(
6
), pp.
224
230
.
57.
Rojek
,
J.
,
Onate
,
E.
,
Labra
,
C.
, and
Kargl
,
H.
,
2011
, “
Discrete Element Simulation of Rock Cutting
,”
Int. J. Rock Mech. Mining Sci.
,
48
(
6
), pp.
996
1010
. 10.1016/j.ijrmms.2011.06.003
58.
Su
,
O.
, and
Akcin
,
N. A.
,
2011
, “
Numerical Simulation of Rock Cutting Using the Discrete Element Method
,”
Int. J. Rock Mech. Mining Sci.
,
48
(
3
), pp.
434
442
. 10.1016/j.ijrmms.2010.08.012
59.
Mendoza Rizo
,
J. A.
,
2013
, “
Considerations for Discrete Element Modeling of Rock Cutting
,” Ph.D. thesis,
University of Pittsburgh
,
Pittsburgh, PA
.
60.
He
,
X.
, and
Xu
,
C.
,
2015
, “
Discrete Element Modelling of Rock Cutting: From Ductile to Brittle Transition
,”
Int. J. Num. Anal. Methods Geomech.
,
39
(
12
), pp.
1331
1351
. 10.1002/nag.2362
61.
Sun
,
Z.
,
Espinoza
,
D. N.
,
Balhoff
,
M. T.
, and
Dewers
,
T. A.
,
2017
, “
Discrete Element Modeling of Micro-Scratch Tests: Investigation of Mechanisms of Co 2 Alteration in Reservoir Rocks
,”
Rock Mech. Rock Eng.
,
50
(
12
), pp.
3337
3348
. 10.1007/s00603-017-1306-z
62.
Cai
,
Y.
,
Han
,
L.
,
Tian
,
L.
, and
Zhang
,
L.
,
2016
, “
Meshless Method Based on Shepard Function and Partition of Unity for Two-Dimensional Crack Problems
,”
Eng. Anal. Boundary Elements
,
65
, pp.
126
135
. 10.1016/j.enganabound.2016.01.009
63.
Cusatis
,
G.
,
Pelessone
,
D.
, and
Mencarelli
,
A.
,
2011
, “
Lattice Discrete Particle Model (ldpm) for Failure Behavior of Concrete. I: Theory
,”
Cement Concrete Composites
,
33
(
9
), pp.
881
890
. 10.1016/j.cemconcomp.2011.02.011
64.
Cusatis
,
G.
,
Mencarelli
,
A.
,
Pelessone
,
D.
, and
Baylot
,
J.
,
2011
, “
Lattice Discrete Particle Model (ldpm) for Failure Behavior of Concrete. Ii: Calibration and Validation
,”
Cement Concrete Composites
,
33
(
9
), pp.
891
905
. 10.1016/j.cemconcomp.2011.02.010
65.
Buyukozturk
,
O.
, and
Lee
,
K. M.
,
1992
, “
Mixed Mode Fracture Concepts in Structural Concrete Design
,”
ACI Special Publicat.
,
134
, pp.
47
62
.
66.
Erdogan
,
F.
, and
Sih
,
G.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic. Eng.
,
85
(
4
), pp.
519
525
. 10.1115/1.3656897
67.
Sih
,
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fracture
,
10
(
3
), pp.
305
321
. 10.1007/BF00035493
68.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
69.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
Oxford, UK
.
70.
Cedolin
,
L.
, and
Cusatis
,
G.
,
2008
, “
Identification of Concrete Fracture Parameters Through Size Effect Experiments
,”
Cement Concrete Compos.
,
30
(
9
), pp.
788
797
. 10.1016/j.cemconcomp.2008.05.007
71.
Cusatis
,
G.
, and
Schauffert
,
E. A.
,
2009
, “
Cohesive Crack Analysis of Size Effect
,”
Eng. Fract. Mech.
,
76
(
14
), pp.
2163
2173
. 10.1016/j.engfracmech.2009.06.008
72.
Di Luzio
,
G.
, and
Cusatis
,
G.
,
2018
, “
Cohesive Crack Analysis of Size Effect for Samples With Blunt Notches and Generalized Size Effect Curve for Quasi-Brittle Materials
,”
Eng. Fract. Mech.
,
204
, pp.
15
28
. 10.1016/j.engfracmech.2018.09.003
73.
Cusatis
,
G.
,
2013
, “
The Lattice Discrete Particle Model (ldpm) for the Numerical Simulation of Concrete Behavior Subject to Penetration
,”
Materials under Extreme Loadings: Application to Penetration and Impact
, pp.
369
387
.
74.
Smith
,
J.
,
Cusatis
,
G.
,
Pelessone
,
D.
,
Landis
,
E.
,
O’Daniel
,
J.
, and
Baylot
,
J.
,
2014
, “
Discrete Modeling of Ultra-High-Performance Concrete With Application to Projectile Penetration
,”
Int. J. Impact Eng.
,
65
, pp.
13
32
. 10.1016/j.ijimpeng.2013.10.008
75.
Feng
,
J.
,
Yao
,
W.
,
Li
,
W.
, and
Li
,
W.
,
2017
, “
Lattice Discrete Particle Modeling of Plain Concrete Perforation Responses
,”
Int. J. Impact Eng.
,
109
, pp.
39
51
. 10.1016/j.ijimpeng.2017.05.017
76.
Li
,
W.
,
Rezakhani
,
R.
,
Jin
,
C.
,
Zhou
,
X.
, and
Cusatis
,
G.
,
2017
, “
A Multiscale Framework for the Simulation of the Anisotropic Mechanical Behavior of Shale
,”
Int. J. Num. Anal. Methods Geomech.
,
41
(
14
), pp.
1494
1522
. 10.1002/nag.2684
77.
Ashari
,
S. E.
,
Buscarnera
,
G.
, and
Cusatis
,
G.
,
2017
, “
A Lattice Discrete Particle Model for Pressure-Dependent Inelasticity in Granular Rocks
,”
Int. J. Rock Mech. Mining Sci.
,
91
, pp.
49
58
. 10.1016/j.ijrmms.2016.10.007
78.
Angiolilli
,
M.
,
Gregori
,
A.
,
Pathirage
,
M.
, and
Cusatis
,
G.
,
2020
, “
Fiber Reinforced Cementitious Matrix (Frcm) for Strengthening Historical Stone Masonry Structures: Experiments and Computations
,”
Eng. Struct.
,
224
, p.
111102
. 10.1016/j.engstruct.2020.111102
79.
Mercuri
,
M.
,
Pathirage
,
M.
,
Gregori
,
A.
, and
Cusatis
,
G.
,
2020
, “
Computational Modeling of the Out-of-Plane Behavior of Unreinforced Irregular Masonry
,”
Eng. Struct.
,
223
, p.
111181
. 10.1016/j.engstruct.2020.111181
80.
Alnaggar
,
M.
,
Cusatis
,
G.
, and
Di Luzio
,
G.
,
2013
, “
Lattice Discrete Particle Modeling (ldpm) of Alkali Silica Reaction (asr) Deterioration of Concrete Structures
,”
Cement Concrete Composites
,
41
, pp.
45
59
. 10.1016/j.cemconcomp.2013.04.015
81.
Pathirage
,
M.
,
Bousikhane
,
F.
,
D’Ambrosia
,
M.
,
Alnaggar
,
M.
, and
Cusatis
,
G.
,
2019
, “
Effect of Alkali Silica Reaction on the Mechanical Properties of Aging Mortar Bars: Experiments and Numerical Modeling
,”
Int. J. Damage Mech.
,
28
(
2
), pp.
291
322
. 10.1177/1056789517750213
82.
Di Luzio
,
G.
, and
Cusatis
,
G.
,
2009
, “
Hygro-Thermo-Chemical Modeling of High Performance Concrete. I: Theory
,”
Cement Concrete Composites
,
31
(
5
), pp.
301
308
. 10.1016/j.cemconcomp.2009.02.015
83.
Pathirage
,
M.
,
Bentz
,
D.
,
Di Luzio
,
G.
,
Masoero
,
E.
, and
Cusatis
,
G.
,
2019
, “
The Onix Model: a Parameter-Free Multiscale Framework for the Prediction of Self-Desiccation in Concrete
,”
Cement Concrete Composites
,
103
, pp.
36
48
. 10.1016/j.cemconcomp.2019.04.011
84.
Guinea
,
G.
,
Planas
,
J.
, and
Elices
,
M.
,
1992
, “
Measurement of the Fracture Energy Using Three-Point Bend Tests: Part 1—Influence of Experimental Procedures
,”
Mater. Struct.
,
25
(
4
), pp.
212
218
. 10.1007/BF02473065
85.
Tada
,
H.
,
1985
,
The Stress Analysis of Cracks Handbook
,
Paris Productions
,
UK
.
86.
Cusatis
,
G.
, and
Cedolin
,
L.
,
2007
, “
Two-Scale Study of Concrete Fracturing Behavior
,”
Eng. Fract. Mech.
,
74
(
1–2
), pp.
3
17
. 10.1016/j.engfracmech.2006.01.021
87.
Nguyen
,
H.
,
Pathirage
,
M.
,
Rezaei
,
M.
,
Issa
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
New Perspective of Fracture Mechanics Inspired by Gap Test With Crack-Parallel Compression
,”
Proc. Natl. Acad. Sci. USA
,
117
(
25
), pp.
14015
14020
. 10.1073/pnas.2005646117
88.
Nguyen
,
H. T.
,
Pathirage
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
Gap Test of Crack-Parallel Stress Effect on Quasibrittle Fracture and Its Consequences
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071012
. 10.1115/1.4047215
89.
Hu
,
X.
, and
Wittmann
,
F.
,
2000
, “
Size Effect on Toughness Induced by Crack Close to Free Surface
,”
Eng. Fract. Mech.
,
65
, pp.
209
221
. 10.1016/S0013-7944(99)00123-X
90.
Hu
,
X.-Z.
,
2002
, “
An Asymptotic Approach to Size Effect on Fracture Toughness and Fracture Energy of Composites
,”
Eng. Fract. Mech.
,
69
, pp.
555
564
. 10.1016/S0013-7944(01)00102-3
91.
Duan
,
K.
,
Hu
,
X.
, and
Wittmann
,
F. H.
,
2003
, “
Boundary Effect on Concrete Fracture and Non-Constant Fracture Energy Distribution
,”
Eng. Fract. Mech.
,
70
, pp.
2257
2268
. 10.1016/S0013-7944(02)00223-0
92.
Ferreira
,
L.
,
Bittencourt
,
T.
,
Sousa
,
J.
, and
Gettu
,
R.
,
2002
, “
R-Curve Behavior in Notched Beam Tests of Rocks
,”
Eng. Fract. Mech.
,
69
, pp.
1845
1852
. 10.1016/S0013-7944(02)00064-4
You do not currently have access to this content.