Abstract

Dielectric elastomers (DEs) are a class of highly deformable electroactive polymers (EAPs) employed for electromechanical transduction technology. When electrostatically actuated dielectric elastomer actuators (DEAs) are subjected to an input signal comprising multiple Heaviside voltage steps, the emerging inherent residual vibrations may limit their motion accuracy in practical applications. In this paper, the systematic development of a command-shaping scheme is proposed for controlling residual vibrations in an electrically driven planar DEA. The proposed scheme relies on invoking the force balance at the point of maximum lateral stretch in an oscillation cycle to bring the actuator to a stagnation state followed by the application of an additional electric input signal of predetermined magnitude at a specific time. The underlying concept of the proposed control scheme is articulated for a single Heaviside step input-driven actuator and further extended to the actuator subjected to the multistep input signal. The equation governing the dynamic motion of the actuator is derived using the principle of virtual work. The devised dynamic model of the actuator incorporates the effects of strain stiffening of elastomer and viscous energy dissipation. The nonlinear dynamic governing equation is solved using matlab ode solver for extracting the dynamic response of the actuator. The applicability of the devised command-shaping control scheme is illustrated by taking a wide range of parameters including variations in the extent of equilibrium state sequences, damping, and polymer chain extensibility. The proposed scheme is found to be adaptable in controlling the vibrations of the actuator for any desired equilibrium state. The results presented in this paper can find its potential application in the design of an open-loop control system for DEAs.

References

1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
. 10.1126/science.287.5454.836
2.
Lai
,
W.
,
2015
,
Characterization, Fabrication, and Analysis of Soft Dielectric Elastomer Actuators Capable of Complex 3D Deformation
,
Graduate Theses and Dissertations
,
Iowa State University
, p.
14808
.
3.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Shea
,
H.
, and
Floreano
,
D.
,
2018
, “
Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators
,”
Soft Rob.
,
5
(
4
), pp.
466
474
. 10.1089/soro.2017.0062
4.
Li
,
W.-B.
,
Zhang
,
W.-M.
,
Zou
,
H.-X.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2018
, “
Multisegment Annular Dielectric Elastomer Actuators for Soft Robots
,”
Smart Mater. Struct.
,
27
(
11
), p.
115024
. 10.1088/1361-665X/aae1d4
5.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
33
41
. 10.1109/TMECH.2010.2089635
6.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3754
3761
. 10.1016/j.ijsolstr.2012.08.006
7.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O’Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
. 10.1063/1.4740023
8.
Maffli
,
L.
,
Rosset
,
S.
, and
Shea
,
H.
,
2013
, “
Zipping Dielectric Elastomer Actuators: Characterization, Design and Modeling
,”
Smart Mater. Struct.
,
22
(
10
), p.
104013
. 10.1088/0964-1726/22/10/104013
9.
Biddiss
,
E.
, and
Chau
,
T.
,
2008
, “
Dielectric Elastomers as Actuators for Upper Limb Prosthetics: Challenges and Opportunities
,”
Med. Eng. Phys.
,
30
(
4
), pp.
403
418
. 10.1016/j.medengphy.2007.05.011
10.
Shian
,
S.
,
Diebold
,
R. M.
, and
Clarke
,
D. R.
,
2013
, “
Tunable Lenses Using Transparent Dielectric Elastomer Actuators
,”
Opt. Express
,
21
(
7
), pp.
8669
8676
. 10.1364/OE.21.008669
11.
Bortot
,
E.
, and
Shmuel
,
G.
,
2017
, “
Tuning Sound With Soft Dielectrics
,”
Smart Mater. Struct.
,
26
(
4
), p.
045028
. 10.1088/1361-665X/aa6387
12.
Chakraborti
,
P.
,
Toprakci
,
H. K.
,
Yang
,
P.
,
Di Spigna
,
N.
,
Franzon
,
P.
, and
Ghosh
,
T.
,
2012
, “
A Compact Dielectric Elastomer Tubular Actuator for Refreshable Braille Displays
,”
Sens. Actuators, A
,
179
, pp.
151
157
. 10.1016/j.sna.2012.02.004
13.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2014
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
438
446
. 10.1109/TMECH.2014.2329367
14.
Fox
,
J. W.
, and
Goulbourne
,
N. C.
,
2008
, “
On the Dynamic Electromechanical Loading of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2669
2686
. 10.1016/j.jmps.2008.03.007
15.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
. 10.1063/1.3694267
16.
Sheng
,
J.
,
Chen
,
H.
,
Li
,
B.
, and
Wang
,
Y.
,
2014
, “
Nonlinear Dynamic Characteristics of a Dielectric Elastomer Membrane Undergoing In-Plane Deformation
,”
Smart Mater. Struct.
,
23
(
4
), p.
045010
. 10.1088/0964-1726/23/4/045010
17.
Zhu
,
J.
,
2015
, “
Instability in Nonlinear Oscillation of Dielectric Elastomers
,”
ASME J. Appl. Mech.
,
82
(
6
), p.
061001
. 10.1115/1.4030075
18.
Arora
,
N.
,
Kumar
,
P.
, and
Joglekar
,
M. M.
,
2018
, “
A Modulated Voltage Waveform for Enhancing the Travel Range of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111009
. 10.1115/1.4041039
19.
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2019
, “
Effect of Anisotropy on the Dynamic Electromechanical Instability of a Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
28
(
1
), p.
015006
. 10.1088/1361-665X/aaeaa5
20.
Bortot
,
E.
,
2018
, “
Nonlinear Dynamic Response of Soft Thick-Walled Electro-Active Tubes
,”
Smart Mater. Struct.
,
27
(
10
), p.
105025
. 10.1088/1361-665X/aadbce
21.
Kumar
,
D.
, and
Sarangi
,
S.
,
2019
, “
Dynamic Modeling of a Dielectric Elastomeric Spherical Actuator: An Energy-Based Approach
,”
Soft Mater.
, in press10.1080/1539445X.2019.1616557.
22.
Choi
,
H.
,
Ryew
,
S.
,
Jung
,
K. M.
,
Kim
,
H.
,
Jeon
,
J. W.
,
Nam
,
J.
,
Maeda
,
R.
, and
Tanie
,
K.
,
2002
, “
Soft Actuator for Robotic Applications Based on Dielectric Elastomer: Dynamic Analysis and Applications
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,
Washington, DC
,
May 11–15
, Vol.
3
, pp.
3218
3223
. https://dx.doi.org/10.1109/ROBOT.2002.1013722
23.
Zhang
,
J.
,
Zhao
,
J.
,
Chen
,
H.
, and
Li
,
D.
,
2016
, “
Dynamic Analyses of Viscoelastic Dielectric Elastomers Incorporating Viscous Damping Effect
,”
Smart Mater. Struct.
,
26
(
1
), p.
015010
. 10.1088/1361-665X/26/1/015010
24.
Joglekar
,
M. M.
,
2015
, “
Dynamic-Instability Parameters of Dielectric Elastomer Actuators With Equal Biaxial Prestress
,”
AIAA J.
,
53
(
10
), pp.
3129
3133
. 10.2514/1.J054062
25.
Sharma
,
A. K.
,
Bajpayee
,
S.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2017
, “
Dynamic Instability of Dielectric Elastomer Actuators Subjected to Unequal Biaxial Prestress
,”
Smart Mater. Struct.
,
26
(
11
), p.
115019
. 10.1088/1361-665X/aa8923
26.
Sharma
,
A. K.
,
Arora
,
N.
, and
Joglekar
,
M. M.
,
2018
, “
DC Dynamic Pull-In Instability of a Dielectric Elastomer Balloon: An Energy-Based Approach
,”
Proc. R. Soc. A
,
474
(
2211
), p.
20170900
. 10.1098/rspa.2017.0900
27.
Jordan
,
G.
,
McCarthy
,
D. N.
,
Schlepple
,
N.
,
Krissler
,
J.
,
Schröder
,
H.
, and
Kofod
,
G.
,
2010
, “
Actuated Micro-Optical Submount Using a Dielectric Elastomer Actuator
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
98
102
. 10.1109/TMECH.2010.2089991
28.
Rosset
,
S.
,
O’Brien
,
B. M.
,
Gisby
,
T.
,
Xu
,
D.
,
Shea
,
H. R.
, and
Anderson
,
I. A.
,
2013
, “
Self-Sensing Dielectric Elastomer Actuators in Closed-Loop Operation
,”
Smart Mater. Struct.
,
22
(
10
), p.
104018
. 10.1088/0964-1726/22/10/104018
29.
Gu
,
G.-Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.-Y.
,
2015
, “
Feedforward Deformation Control of a Dielectric Elastomer Actuator Based on a Nonlinear Dynamic Model
,”
Appl. Phys. Lett.
,
107
(
4
), p.
042907
. 10.1063/1.4927767
30.
Zou
,
J.
,
Gu
,
G.-Y.
, and
Zhu
,
L.-M.
,
2016
, “
Open-Loop Control of Creep and Vibration in Dielectric Elastomer Actuators With Phenomenological Models
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
51
58
. 10.1109/TMECH.2016.2591069
31.
Rizzello
,
G.
,
Naso
,
D.
,
Turchiano
,
B.
, and
Seelecke
,
S.
,
2016
, “
Robust Position Control of Dielectric Elastomer Actuators Based on Lmi Optimization
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
1909
1921
. 10.1109/TCST.2016.2519839
32.
Hau
,
S.
,
Rizzello
,
G.
,
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2017
, “
Design and Control of a High-Speed Positioning System Based on Dielectric Elastomer Membrane Actuators
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1259
1267
. 10.1109/TMECH.2017.2681839
33.
Zou
,
J.
, and
Gu
,
G.
,
2018
, “
High-Precision Tracking Control of a Soft Dielectric Elastomer Actuator With Inverse Viscoelastic Hysteresis Compensation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
36
44
. 10.1109/TMECH.2018.2873620
34.
Zhang
,
M.
,
Cao
,
X.
,
Chen
,
X.
,
Zhang
,
Z.
,
Zheng
,
C.
, and
Li
,
T.
,
2019
, “
Model-Based Nonlinear Control of Dielectric Elastomer Actuator With High Robustness and Precision
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
121004
. 10.1115/1.4044498
35.
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2014
, “
Modeling, Identification, and Control of a Dielectric Electro-Active Polymer Positioning System
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
632
643
. 10.1109/TCST.2014.2338356
36.
Branz
,
F.
, and
Francesconi
,
A.
,
2016
, “
Modelling and Control of Double-Cone Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
25
(
9
), p.
095040
. 10.1088/0964-1726/25/9/095040
37.
Gisby
,
T. A.
,
O’Brien
,
B. M.
, and
Anderson
,
I. A.
,
2013
, “
Self Sensing Feedback for Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
102
(
19
), p.
193703
. 10.1063/1.4805352
38.
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2016
, “
Closed Loop Control of Dielectric Elastomer Actuators Based on Self-Sensing Displacement Feedback
,”
Smart Mater. Struct.
,
25
(
3
), p.
035034
. 10.1088/0964-1726/25/3/035034
39.
Grosser
,
K. E.
, and
Singhose
,
W. E.
,
2000
, “
Command Generation for Reducing Perceived Lag in Flexible Telerobotic Arms
,”
JSME Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
43
(
3
), pp.
755
761
. 10.1299/jsmec.43.755
40.
Masoud
,
Z. N.
, and
Daqaq
,
M. F.
,
2006
, “
A Graphical Approach to Input-Shaping Control Design for Container Cranes With Hoist
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1070
1077
. 10.1109/TCST.2006.883194
41.
Jones
,
S. D.
, and
Ulsoy
,
A. G.
,
1999
, “
An Approach to Control Input Shaping With Application to Coordinate Measuring Machines
,”
ASME J. Dyn. Syst. Meas. Contr.
,
121
(
2
), pp.
242
247
. 10.1115/1.2802461
42.
Godara
,
R. K.
, and
Joglekar
,
M. M.
,
2015
, “
Mitigation of Residual Oscillations in Electrostatically Actuated Microbeams Using a Command-Shaping Approach
,”
J. Micromech. Microeng.
,
25
(
11
), p.
115028
. 10.1088/0960-1317/25/11/115028
43.
Godara
,
R. K.
, and
Joglekar
,
M. M.
,
2016
, “
Mitigation of Contact Bounces in Electrostatically Actuated Nonprismatic Microbeams
,”
Micro Nanosyst.
,
8
(
2
), pp.
99
113
. 10.2174/1876402908666161205143000
44.
Godara
,
R. K.
, and
Joglekar
,
M. M.
,
2017
, “
Alleviation of Residual Oscillations in Electrostatically Actuated Variable-Width Microbeams Using a Feedforward Control Strategy
,”
Microsyst. Technol.
,
23
(
10
), pp.
4441
4457
. 10.1007/s00542-016-3211-x
45.
Joglekar
,
M. M.
,
2014
, “
An Energy-Based Approach to Extract the Dynamic Instability Parameters of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091010
. 10.1115/1.4027925
46.
Sharma
,
A. K.
,
Kumar
,
P.
,
Singh
,
A.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2019
, “
Electromechanical Instability of Dielectric Elastomer Actuators With Active and Inactive Electric Regions
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061008
. 10.1115/1.4042996
47.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
. 10.1063/1.2768641
48.
Li
,
Y.
,
Oh
,
I.
,
Chen
,
J.
,
Zhang
,
H.
, and
Hu
,
Y.
,
2018
, “
Nonlinear Dynamic Analysis and Active Control of Visco-Hyperelastic Dielectric Elastomer Membrane
,”
Int. J. Solids Struct.
,
152
, pp.
28
38
. 10.1016/j.ijsolstr.2018.05.006
49.
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2019
, “
A Computationally Efficient Locking Free Numerical Framework for Modeling Visco-Hyperelastic Dielectric Elastomers
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
625
653
. 10.1016/j.cma.2019.04.035
50.
Gent
,
A.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
. 10.5254/1.3538357
51.
Zhang
,
J.
,
Chen
,
H.
, and
Li
,
D.
,
2018
, “
Modeling Nonlinear Dynamic Properties of Dielectric Elastomers With Various Crosslinks, Entanglements, and Finite Deformations
,”
J. Appl. Phys.
,
123
(
8
), p.
084901
. 10.1063/1.5019300
52.
Henann
,
D. L.
,
Chester
,
S. A.
, and
Bertoldi
,
K.
,
2013
, “
Modeling of Dielectric Elastomers: Design of Actuators and Energy Harvesting Devices
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2047
2066
. 10.1016/j.jmps.2013.05.003
53.
Wang
,
F.
,
Lu
,
T.
, and
Wang
,
T.
,
2016
, “
Nonlinear Vibration of Dielectric Elastomer Incorporating Strain Stiffening
,”
Int. J. Solids Struct.
,
87
, pp.
70
80
. 10.1016/j.ijsolstr.2016.02.030
54.
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2019
, “
A Numerical Framework for Modeling Anisotropic Dielectric Elastomers
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
402
420
. 10.1016/j.cma.2018.10.005
55.
Jia
,
K.
,
Lu
,
T.
, and
Wang
,
T.
,
2019
, “
Deformation Study of an In-Plane Oscillating Dielectric Elastomer Actuator Having Complex Modes
,”
J. Sound Vib.
,
463
, p.
114940
. 10.1016/j.jsv.2019.114940
56.
Li
,
T.
,
Qu
,
S.
,
Keplinger
,
C.
,
Suo
,
Z.
, and
Yang
,
W.
,
2012
, “
Inhomogeneous Deformation and Instability in Soft Dielectric Transducers
,”
APS March Meeting
,
Boston, MA
,
Feb. 27–Mar. 2
https://ui.adsabs.harvard.edu/abs/2012APS..MARX49001L.
57.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Zurlo
,
G.
,
2013
, “
Electromechanical Instability and Oscillating Deformations in Electroactive Polymer Films
,”
Appl. Phys. Lett.
,
102
(
1
), p.
011903
. 10.1063/1.4772956
58.
Zurlo
,
G.
,
Destrade
,
M.
,
DeTommasi
,
D.
, and
Puglisi
,
G.
,
2017
, “
Catastrophic Thinning of Dielectric Elastomers
,”
Phys. Rev. Lett.
,
118
(
7
), p.
078001
. 10.1103/PhysRevLett.118.078001
59.
Qu
,
S.
, and
Suo
,
Z.
,
2012
, “
A Finite Element Method for Dielectric Elastomer Transducers
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
459
466
. 10.1016/S0894-9166(12)60040-8
60.
Zhang
,
Z.-Q.
,
Foo
,
C. C.
, and
Liu
,
G.
,
2015
, “
A Semi-Explicit Finite Element Method for Dynamic Analysis of Dielectric Elastomers
,”
Int. J. Comput. Methods
,
12
(
1
), p.
1350108
. 10.1142/S0219876213501089
61.
Seifi
,
S.
,
Park
,
K.
, and
Park
,
H. S.
,
2018
, “
A Staggered Explicit–Implicit Finite Element Formulation for Electroactive Polymers
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
150
164
. 10.1016/j.cma.2018.03.028
62.
Jia
,
K.
,
Lu
,
T.
, and
Wang
,
T.
,
2016
, “
Response Time and Dynamic Range for a Dielectric Elastomer Actuator
,”
Sens. Actuators, A
,
239
, pp.
8
17
. 10.1016/j.sna.2016.01.013
You do not currently have access to this content.