This paper presents a novel application of multiparameter spectral theory to the study of structural stability, with particular emphasis on aeroelastic flutter. Methods of multiparameter analysis allow the development of significant new solution and analysis algorithms for aeroelastic flutter problems; including direct solvers for polynomial problems of arbitrary order and size, and a pseudospectral method for characterizing the nature of the flutter point and its local modal damping gradient. Two variants of the flutter point direct solver are presented, their computational characteristics are compared, and an efficient hybrid method of direct spectral solution and iterative pseudospectral solution is developed. This method is well suited to the analysis of problems arising in reduced-order modeling and preliminary design optimization and has the advantage of computing all the system flutter points and their characteristics with minimal user oversight. The aeroelastic inverse problem, with applications in parameter identification and system optimization, is also shown to be solvable via multiparameter analysis. Extensions and improvements to this new conceptual framework and associated solvers are discussed.

References

1.
Dowell
,
E. H.
,
Cox
,
D.
,
Curtiss
,
H. C.
, Jr.
,
Edwards
,
J. W.
,
Hall
,
K. C.
,
Peters
,
D. A.
,
Scanlan
,
R. H.
,
Simiu
,
E.
,
Sisto
,
F.
, and
Strganac
,
T. W.
,
2004
,
A Modern Course in Aeroelasticity
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
2.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2011
,
Introduction to Structural Dynamics and Aeroelasticity
, 2nd ed.,
Cambridge University Press
,
New York
.
3.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1957
,
Aeroelasticity
,
Addison-Wesley
,
Reading, MA
.
4.
Hassig
,
H. J.
,
1971
, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration
,”
J. Aircr.
,
8
(
11
), pp.
885
889
.
5.
Haddadpour
,
H.
, and
Firouz-Abadi
,
R. D.
,
2009
, “
True Damping and Frequency Prediction for Aeroelastic Systems: The PP Method
,”
J. Fluids Struct.
,
25
(
7
), pp.
1177
1188
.
6.
Namini
,
A.
,
Albrecht
,
P.
, and
Bosch
,
H.
,
1992
, “
Finite Element-Based Flutter Analysis of Cable-Suspended Bridges
,”
J. Struct. Eng.
,
118
(
6
), pp.
1509
1526
.
7.
Chen
,
P. C.
,
2000
, “
Damping Perturbation Method for Flutter Solution: The g-Method
,”
AIAA J.
,
38
(
9
), pp.
1519
1524
.
8.
Lind
,
R.
, and
Brenner
,
M.
,
1999
,
Robust Aeroservoelastic Stability Analysis
,
Springer-Verlag
,
London
.
9.
Lind
,
R.
,
2002
, “
Match-Point Solutions for Robust Flutter Analysis
,”
J. Aircr.
,
39
(
1
), pp.
91
99
.
10.
Borglund
,
D.
,
2003
, “
Robust Aeroelastic Stability Analysis Considering Frequency-Domain Aerodynamic Uncertainty
,”
J. Aircr.
,
40
(
1
), pp.
189
193
.
11.
Borglund
,
D.
,
2004
, “
The μ-k Method for Robust Flutter Solutions
,”
J. Aircr.
,
41
(
5
), pp.
1209
1216
.
12.
Borglund
,
D.
,
2005
, “
Upper Bound Flutter Speed Estimation Using the μ-k Method
,”
J. Aircr.
,
42
(
2
), pp.
555
557
.
13.
Borglund
,
D.
, and
Ringertz
,
U.
,
2006
, “
Efficient Computation of Robust Flutter Boundaries Using the μ-k Method
,”
J. Aircr.
,
43
(
6
), pp.
1763
1769
.
14.
Gu
,
Y.
,
Yang
,
Z.
,
Wang
,
W.
, and
Xia
,
W.
,
2009
, “
Dynamic Pressure Perturbation Method for Flutter Solution: The Mu-Omega Method
,”
AIAA
Paper No. 2009-2312.
15.
Gu
,
Y.
, and
Yang
,
Z.
,
2010
, “
Generalized Mu-Omega Method With Complex Perturbation to Dynamic Pressure
,”
AIAA
Paper No. 2010-2799.
16.
Borglund
,
D.
,
2008
, “
Robust Eigenvalue Analysis Using the Structured Singular Value: The μ-p Flutter Method
,”
AIAA J.
,
46
(11), pp. 2806–2813.
17.
Afolabi
,
D.
,
1994
, “
Flutter Analysis Using Transversality Theory
,”
Acta Mech.
,
103
(
1–4
), pp.
1
15
.
18.
Afolabi
,
D.
,
Pidaparti
,
R. M. V.
, and
Yang
,
H. T. Y.
,
1998
, “
Flutter Prediction Using an Eigenvector Orientation Approach
,”
AIAA J.
,
36
(
1
), pp.
69
74
.
19.
Irani
,
S.
, and
Sazesh
,
S.
,
2013
, “
A New Flutter Speed Analysis Method Using Stochastic Approach
,”
J. Fluids Struct.
,
40
, pp.
105
114
.
20.
Gu
,
Y.
,
Zhang
,
X.
, and
Yang
,
Z.
,
2012
, “
Robust Flutter Analysis Based on Genetic Algorithm
,”
Sci. China Technol. Sci.
,
55
(
9
), pp.
2474
2481
.
21.
Blythe
,
P. W.
, and
Herszberg
,
I. H.
,
1993
, “
The Solution of Flutter Equations Using Neural Networks
,”
Fifth Australian Aeronautical Conference
, Melbourne, Australia, Sept. 13–15.
22.
Chen
,
C. H.
,
2003
, “
Determination of Flutter Derivatives Via a Neural Network Approach
,”
J. Sound Vib.
,
263
(
4
), pp.
797
813
.
23.
Chen
,
C. H.
,
Wu
,
J. C.
, and
Chen
,
J. H.
,
2008
, “
Prediction of Flutter Derivatives by Artificial Neural Networks
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1925
1937
.
24.
Natarajan
,
A.
,
2002
, “Aeroelasticity of Morphing Wings Using Neural Networks,”
Doctoral dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
25.
Meerbergen
,
K.
,
Schröder
,
C.
, and
Voss
,
H.
,
2013
, “
A Jacobi-Davidson Method for Two-Real-Parameter Nonlinear Eigenvalue Problems Arising From Delay-Differential Equations
,”
Numer. Linear Algebra Appl.
,
20
(
5
), pp.
852
868
.
26.
Meerbergen
,
K.
, and
Spence
,
A.
,
2010
, “
Inverse Iteration for Purely Imaginary Eigenvalues With Application to the Detection of Hopf Bifurcations in Large-Scale Problems
,”
SIAM J. Matrix Anal. Appl.
,
31
(
4
), pp.
1982
1999
.
27.
Goland
,
M.
,
1945
, “
The Flutter of a Uniform Cantilever Wing
,”
ASME J. Appl. Mech.
,
12
(
4
), pp.
A197
A208
.
28.
Pons
,
A.
,
2015
, “Aeroelastic Flutter as a Multiparameter Eigenvalue Problem,”
Master's thesis
, University of Canterbury, Christchurch, New Zealand.
29.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2017
, “
Multiparameter Solution Methods for Semi-Structured Aeroelastic Flutter Problems
,”
AIAA J.
,
55
(
10
), pp.
3530
3538
.
30.
White
,
F. M.
,
2009
,
Fluid Mechanics
, 6th ed.,
McGraw-Hill
,
New York
.
31.
Muhič
,
A.
, and
Plestenjak
,
B.
,
2010
, “
On the Quadratic Two-Parameter Eigenvalue Problem and Its Linearization
,”
Linear Algebra Appl.
,
432
(
10
), pp.
2529
2542
.
32.
Hochstenbach
,
M. E.
,
Muhič
,
A.
, and
Plestenjak
,
B.
,
2012
, “
On Linearizations of the Quadratic Two-Parameter Eigenvalue Problem
,”
Linear Algebra Appl.
,
436
(
8
), pp.
2725
2743
.
33.
Tisseur
,
F.
, and
Meerbergen
,
K.
,
2001
, “
The Quadratic Eigenvalue Problem
,”
SIAM Rev.
,
43
(
2
), pp.
235
286
.
34.
Hochstenbach
,
M. E.
, and
Plestenjak
,
B.
,
2002
, “
A Jacobi-Davidson Type Method for a Right Definite Two-Parameter Eigenvalue Problem
,”
SIAM J. Matrix Anal. Appl.
,
24
(
2
), pp.
392
410
.
35.
Plestenjak
,
B.
,
2001
, “
A Continuation Method for a Weakly Elliptic Two-Parameter Eigenvalue Problem
,”
IMA J. Numer. Anal.
,
21
(
1
), pp.
199
216
.
36.
Quarteroni
,
A.
,
Sacco
,
R.
, and
Saleri
,
F.
,
2007
,
Numerical Mathematics
, 2nd ed.,
Springer-Verlag
,
Berlin
.
37.
Cottin
,
N.
,
2001
, “
Dynamic Model Updating—A Multiparameter Eigenvalue Problem
,”
Mech. Syst. Signal Process.
,
15
(
4
), pp.
649
665
.
38.
Cottin
,
N.
, and
Reetz
,
J.
,
2006
, “
Accuracy of Multiparameter Eigenvalues Used for Dynamic Model Updating With Measured Natural Frequencies Only
,”
Mech. Syst. Signal Process.
,
20
(
1
), pp.
65
77
.
39.
Muhič
,
A.
, and
Plestenjak
,
B.
,
2009
, “
On the Singular Two-Parameter Eigenvalue Problem
,”
Electron. J. Linear Algebra
,
18
(
1
), pp.
420
437
.
40.
Hochstenbach
,
M. E.
, and
Plestenjak
,
B.
,
2003
, “
Backward Error, Condition Numbers, and Pseudospectra for the Multiparameter Eigenvalue Problem
,”
Linear Algebra Appl.
,
375
, pp.
63
81
.
41.
Plestenjak
,
B.
, and
Muhič
,
A.
,
2015
, “
MultiParEig 1.0
,”
MATLAB File Exchange
,
Ljubljana, Slovenia
.
42.
Košir
,
T.
,
1994
, “
Finite-Dimensional Multiparameter Spectral Theory: The Nonderogatory Case
,”
Linear Algebra Appl.
,
212–213
, pp.
45
70
.
43.
Binding
,
B.
, and
Browne
,
P. J.
,
1989
, “
Two Parameter Eigenvalue Problems for Matrices
,”
Linear Algebra Appl.
,
113
, pp.
139
157
.
44.
Atkinson
,
F. V.
,
1968
, “
Multiparameter Spectral Theory
,”
Bull. Am. Math. Soc.
,
74
(
1
), pp.
1
28
.
45.
Atkinson
,
F. V.
,
1972
,
Multiparameter Eigenvalue Problems: Matrices and Compact Operators
,
Academic Press
,
London
.
46.
Rynne
,
B. P.
,
1988
, “
Multiparameter Spectral Theory and Taylor's Joint Spectrum in Hilbert Space
,”
Proc. Edinburgh Math. Soc.
,
31
(
1
), p.
127
.
47.
Anton
,
H.
,
1977
,
Elementary Linear Algebra
, 2nd ed.,
Wiley
,
New York
.
48.
Eiselt
,
H. A.
, and
Sandblom
,
C. L.
,
2007
,
Linear Programming and Its Applications
,
Springer-Verlag
,
Berlin
.
49.
Trefethen
,
L. N.
, and
Bau
,
D.
,
1997
,
Numerical Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
50.
Trefethen
,
L. N.
,
1992
,
Pseudospectra of Matrices, Numerical Analysis 1991
,
D. F.
Griffiths
, and
G. A.
Watson
, eds.,
Longman Scientific and Technical
,
Harlow, Essex, UK
, pp.
234
266
.
51.
Murthy
,
D. V.
, and
Kaza
,
K. R. V.
,
1987
, “
A Computational Procedure for Automated Flutter Analysis
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No.
100171
.
52.
Podlevskyi
,
B. M.
,
2008
, “
Newton's Method as a Tool for Finding the Eigenvalues of Certain Two-Parameter (Multiparameter) Spectral Problems
,”
Comput. Math. Math. Phys.
,
48
(
12
), pp.
2140
2145
.
53.
Podlevskyi
,
B. M.
,
2010
, “
Numerical Solution of Some Two-Parameter Eigenvalue Problems
,”
J. Math. Sci.
,
165
(
2
), pp.
214
220
.
54.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2016
, “
Aeroelastic Flutter of Continuous Systems: A Generalized Laplace Transform Method
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081005
.
You do not currently have access to this content.