A novel algorithm for the estimation of rigid-body angular velocity and attitude—the most challenging part of pose-and-twist estimation—based on isotropic accelerometer strapdowns, is proposed in this paper. Quaternions, which employ four parameters for attitude representation, provide a compact description without the drawbacks brought about by other representations, for example, the gimbal lock of Euler angles. Within the framework of quaternions for rigid-body angular velocity and attitude estimation, the proposed methodology automatically preserves the unit norm of the quaternion, thus improving the accuracy and efficiency of the estimation. By virtue of the inherent nature of isotropic accelerometer strapdowns, the centripetal acceleration is filtered out, leaving only its tangential counterpart, to be estimated and updated. Meanwhile, using the proposed integration algorithm, the angular velocity and the quaternion, which are dependent only on the tangential acceleration, are calculated and updated at appropriate sampled instants for high accuracy. This strategy, which brings about robustness, allows for relatively large time-step sizes, low memory demands, and low computational complexity. The proposed algorithm is tested by simulation examples of the angular velocity and attitude estimation of a free-rotating brick and the end-effector of an industrial robot. The simulation results showcase the algorithm with low errors, as estimated based on energy conservation, and high-order rate of convergence, as compared with other algorithms in the literature.

References

1.
Yazdi
,
N.
,
Ayazi
,
F.
, and
Najafi
,
K.
,
1998
, “
Micromachined Inertial Sensors
,”
Proc. IEEE
,
86
(
8
), pp.
1640
1659
.
2.
Mital
,
N. K.
, and
King
,
A. I.
,
1979
, “
Computation of Rigid-Body Rotation in Three-Dimensional Space From Body-Fixed Linear Acceleration Measurements
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
925
930
.
3.
Pamadi
,
K. B.
,
Ohlmeyer
,
E. J.
, and
Pepitone
,
T. R.
,
2004
, “
Assessment of a GPS Guided Spinning Projectile Using an Accelerometer-Only IMU
,”
AIAA
Paper No. 2004-4881.
4.
Barbour
,
N.
, and
Schmidt
,
G.
,
2001
, “
Inertial Sensor Technology Trends
,”
IEEE Sens.
,
1
(
4
), pp.
332
339
.
5.
Cappa
,
P.
,
Patanè
,
F.
, and
Rossi
,
S.
,
2008
, “
Two Calibration Procedures for a Gyroscope-Free Inertial Measurement System Based on a Double-Pendulum Apparatus
,”
Meas. Sci. Technol.
,
19
(
5
), pp.
32
38
.
6.
Comi
,
C.
,
Corigliano
,
A.
,
Langfelder
,
G.
,
Longoni
,
A.
,
Tocchio
,
A.
, and
Simon
,
B.
,
2011
, “
A New Biaxial Silicon Resonant Micro Accelerometer
,”
IEEE 24th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Cancun, Mexico, Jan, 23–27, pp. 529–532.
7.
Zou
,
Q.
,
Tan
,
W.
,
Kim
,
E.
,
Singh
,
J.
, and
Loeb
,
G. E.
,
2004
, “
Implantable Biaxial Piezoresistive Accelerometer for Sensorimotor Control
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS'04
), San Francisco, CA, Sept. 1–5, pp. 4279–4282.
8.
Cardou
,
P.
, and
Angeles
,
J.
,
2007
, “
Simplectic Architectures for True Multi-Axial Accelerometers: A Novel Application of Parallel Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
181
186
.
9.
Zou
,
T.
, and
Angeles
,
J.
,
2014
, “
Structural and Instrumentation Design of a Microelectromechanical Systems Biaxial Accelerometer
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
13
), pp.
2440
2455
.
10.
Zou
,
T.
, and
Angeles
,
J.
,
2014
, “
The Decoupling of the Cartesian Stiffness Matrix in the Design of Microaccelerometers
,”
Multibody Syst. Dyn.
,
34
(
1
), pp.
1
21
.
11.
Zou
,
T.
, and
Angeles
,
J.
,
2014
, “
Isotropic Accelerometer Strapdowns and Related Algorithms for Rigid-Body Pose and Twist Estimation
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111001
.
12.
Spring
,
K. W.
,
1986
, “
Euler Parameters and the Use of Quaternion Algebra in the Manipulation of Finite Rotations: A Review
,”
Mech. Mach. Theory
,
21
(
5
), pp.
365
373
.
13.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.
14.
Treven
,
A.
, and
Saje
,
M.
,
2015
, “
Integrating Rotation and Angular Velocity From Curvature
,”
Adv. Eng. Software
,
85
, pp.
26
42
.
15.
Kosenko
,
I.
,
1998
, “
Integration of the Equations of a Rotational Motion of a Rigid Body in Quaternion Algebra, the Euler Case
,”
J. Appl. Math. Mech.
,
62
(
2
), pp.
193
200
.
16.
Linne
,
M.
,
2002
,
Spectroscopic Measurement: An Introduction to the Fundamentals
,
Academic Press
,
San Diego, CA
.
17.
Eberly
,
D.
,
2002
,
Rotation Representations and Performance Issues
,
Magic Software
Inc., Chapel Hill, NC.
18.
Kuiper
,
J.
,
1999
,
Quaternions and Rotation Sequences
,
Princeton University Press
,
Princeton, NJ
.
19.
Reich
,
S.
,
1996
, “
Symplectic Integrators for Systems of Rigid Bodies
,”
Integration Algorithms for Classical Mechanics
(Fields Institute Communications, Vol. 10), J. E. Marsden, G. W. Patrick, and W. F. Shadwick, eds., American Mathematical Society, Providence, RI, pp.
181
191
.
20.
Seelen
,
L.
,
Padding
,
J.
, and
Kuipers
,
J.
,
2016
, “
Improved Quaternion-Based Integration Scheme for Rigid Body Motion
,”
Acta Mech.
,
227
(
12
), pp.
3381
3389
.
21.
Andrle
,
M.
, and
Crassidis
,
J.
,
2013
, “
Geometric Integration of Quaternions
,”
AIAA J. Guid. Control Dyn.
,
36
(
6
), pp.
1762
1767
.
22.
Zupan
,
E.
, and
Saje
,
M.
,
2011
, “
Integrating Rotation From Angular Velocity
,”
Adv. Eng. Software
,
42
(
9
), pp.
723
733
.
23.
Betsch
,
P.
, and
Siebert
,
R.
,
2009
, “
Rigid Body Dynamics in Terms of Quaternions: Hamiltonian Formulation and Conserving Numerical Integration
,”
Int. J. Numer. Methods Eng.
,
79
(
4
), pp.
444
473
.
24.
Whitmore
,
S.
,
2000
, “Closed-Form Integrator for the Quaternion (Euler Angle) Kinematics Equations,” National Aeronautics and Space Administration, Washington, DC, U.S. Patent No.
US6061611
.
25.
Zhao
,
F.
, and
van Wachem
,
B.
,
2013
, “
A Novel Quaternion Integration Approach for Describing the Behaviour of Non-Spherical Particles
,”
Acta Mech.
,
224
(
12
), pp.
3091
3109
.
26.
Kreyszig
,
E.
,
1997
,
Advanced Engineering Mathematics
,
Wiley
,
New York
.
27.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.
28.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
, 4th ed.,
Springer
,
New York
.
29.
Baltes
,
H.
,
Brand
,
O.
,
Fedder
,
G.
,
Hierold
,
C.
,
Korvink
,
J.
, and
Tabata
,
O.
,
2005
,
Circuit and System Integration
, Vol.
2
,
Wiley-VCH
,
Weinheim, Germany
.
30.
Julier
,
S. J.
,
Uhlmann
,
J. K.
, and
Durrant-Whyte
,
H.
,
1995
, “
A New Approach for Filtering Nonlinear Systems
,”
American Control Conference
, Seattle, WA, June 21–23, pp.
1628
1632
.
31.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
Proc. SPIE
,
3068
, pp. 182–193.
32.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
2004
, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
.
33.
Corke
,
P. I.
,
2011
,
Robotics, Vision & Control: Fundamental Algorithms in MATLAB
,
Springer
, Berlin.
34.
Brand
,
L.
,
1965
,
Advanced Calculus
,
Wiley
,
New York
.
35.
Brogan
,
W. L.
,
1991
,
Modern Control Theory
,
Prentice Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.