An approximate mathematical treatise is proposed to improve the accuracy of multiscale models for nonlinear mechanics of two-dimensional (2D) nanomaterials by taking into account the contribution of dihedral energy term in the nonlinear constitutive model for the generalized deformation (three nonzero components of each strain and curvature tensors) of the corresponding continuum. Twelve dihedral angles per unit cell of graphene sheet are expressed as functions of strain and curvature tensor components. The proposed model is employed to study the bending modulus of graphene sheets under finite curvature. The atomic interactions are modeled using first- and second-generation reactive empirical bond order (REBO) potentials with the modifications in the former to include dihedral energy term for accurate prediction of bending stiffness coefficients. The constitutive law is obtained by coupling the atomistic and continuum deformations through Cauchy–Born rule. The present model will facilitate the investigations on the nonlinear mechanics of graphene sheets and carbon nanotubes (CNTs) with greater accuracy as compared to those reported in the literature without considering dihedral energy term in multiscale modeling.

References

1.
Annamalai
,
M.
,
Mathew
,
S.
,
Jamali
,
M.
,
Zhan
,
D.
, and
Palaniapan
,
M.
,
2012
, “
Elastic and Nonlinear Response of Nanomechanical Graphene Devices
,”
J. Micromech. Microeng.
,
22
(
10
), p.
105024
.
2.
Bunch
,
J. S.
,
Van der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2007
, “
Electromechanical Resonators From Graphene Sheets
,”
Science
,
315
(
5811
), pp.
490
493
.
3.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
4.
Ke
,
C. H.
,
Pugno
,
N.
,
Peng
,
B.
, and
Espinosa
,
H. D.
,
2005
, “
Experiments and Modeling of Carbon Nanotube-Based NEMS Devices
,”
J. Mech. Phys. Solids
,
53
(
6
), pp.
1314
1333
.
5.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(
6584
), pp.
678
680
.
6.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
,
1998
, “
Young's Modulus of Single Walled Nanotubes
,”
Phys. Rev. B
,
58
(
20
), p.
14013
.
7.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
(
5334
), pp.
1971
1975
.
8.
Salvetat
,
J. P.
,
Briggs
,
G. A. D.
,
Bonard
,
J. M.
,
Bacsa
,
R. R.
,
Kulik
,
A. J.
,
Stockli
,
T.
,
Burnham
,
N. A.
, and
Forro
,
L.
,
1999
, “
Elastic and Shear Moduli of Single Walled Carbon Nanotube Ropes
,”
Phys. Rev. Lett.
,
82
(
5
), pp.
944
947
.
9.
Klintenberg
,
M.
,
Lebegue
,
S.
,
Ortiz
,
C.
,
Sanyal
,
B.
,
Fransson
,
J.
, and
Eriksson
,
O.
,
2009
, “
Evolving Properties of Two-Dimensional Materials: From Graphene to Graphite
,”
J. Phys.: Condens. Matter
,
21
(33), p.
335502
.
10.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
,
64
(
23
), p.
235406
.
11.
Liu
,
F.
,
Ming
,
P.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p.
064120
.
12.
Reich
,
S.
,
Thomsen
,
C.
, and
Ordejon
,
P.
,
2002
, “
Elastic Properties of Carbon Nanotubes Under Hydrostatic Pressure
,”
Phys. Rev. B
,
65
(
15
), p.
153407
.
13.
Sanchez-Portal
,
D.
,
Emilio
,
A.
,
Jose
,
M. S.
,
Angel
,
R.
, and
Pablo
,
O.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(19), pp.
12678
12688
.
14.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hemandez
,
E.
, and
Rubio
,
A.
,
1999
, “
Elastic and Mechanical Properties of Carbon Nanotubes
,”
Synth. Met.
,
103
(
1–3
), pp.
2500
2501
.
15.
Hernandez
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
,
1998
, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
,
80
(20), pp.
4502
4505
.
16.
Molina
,
J. M.
,
Savinsky
,
S. S.
, and
Khokhriakov
,
N. V.
,
1996
, “
A Tight‐Binding Model for Calculations of Structures and Properties of Graphitic Nanotubes
,”
J. Chem. Phys.
,
104
(
12
), pp.
4652
4656
.
17.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
,
1992
, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
,
45
(
21
), pp.
12592
12595
.
18.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.
19.
Cornwell
,
C. F.
, and
Wille
,
L. T.
,
1997
, “
Elastic Properties of Single Walled Carbon Nanotubes in Compression
,”
Solid State Commun.
,
101
(
8
), pp.
555
558
.
20.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Single and Multilayered Nanotubes
,”
J. Phys. Chem. Solids
,
58
(
11
), pp.
1649
1652
.
21.
Lordi
,
V.
, and
Yao
,
N.
,
1998
, “
Radial Compression and Controlled Cutting of Carbon Nanotubes
,”
J. Chem. Phys.
,
109
(
6
), pp.
2509
2512
.
22.
Yao
,
N.
, and
Lordi
,
V.
,
1998
, “
Young's Modulus of Single Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
84
(
4
), pp.
1939
1943
.
23.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
,
2004
, “
On the Study of Elastic and Plastic Properties of Multi Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation
,”
Acta Mater.
,
52
(9), pp.
2521
2527
.
24.
Reddy
,
C. D.
,
Rajendran
,
S.
, and
Liew
,
K. M.
,
2006
, “
Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene
,”
Nanotechnol.
,
17
(
3
), pp.
864
870
.
25.
Sears
,
A.
, and
Batra
,
R. C.
,
2004
, “
Macroscopic Properties of Carbon Nanotubes From Molecular Mechanics Simulations
,”
Phys. Rev. B
,
69
(23), p.
235406
.
26.
Gupta
,
S. S.
, and
Batra
,
R. C.
,
2008
, “
Continuum Structures Equivalent in Normal Mode Vibrations to Single Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
715
723
.
27.
Gupta
,
S. S.
, and
Batra
,
R. C.
,
2010
, “
Elastic Properties and Frequencies of Free Vibrations of Single Layer Graphene Sheets
,”
J. Comput. Theor. Nanosci.
,
7
(
10
), pp. 2151–2164.
28.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2003
, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
429
442
.
29.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, “
The Elastic Modulus of Single Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
39
(
13–14
), pp.
3893
3906
.
30.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy–Born Rule
,”
Phys. Rev. B
,
69
(11), p.
115415
.
31.
Guo
,
X.
,
Wang
,
J. B.
, and
Zhang
,
H. W.
,
2006
, “
Mechanical Properties of Single Walled Carbon Nanotubes Based on Higher Order Cauchy–Born Rule
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1276
1290
.
32.
Wang
,
J. B.
,
Guo
,
X.
,
Zhang
,
H. W.
,
Wang
,
L.
, and
Liao
,
J. B.
,
2006
, “
Energy and Mechanical Properties of Single Walled Carbon Nanotubes Predicted Using the Higher Order Cauchy–Born Rule
,”
Phys. Rev. B
,
73
(11), p.
115428
.
33.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), p.
245413
.
34.
Lu
,
Q.
,
Arroyo
,
M.
, and
Huang
,
R.
,
2009
, “
Elastic Bending Modulus of Monolayer Graphene
,”
J. Phys. D: Appl. Phys.
,
42
(
10
), p.
102002
.
35.
Favata
,
A.
,
Micheletti
,
A.
,
Podio-Guidugli
,
P.
, and
Pugno
,
N. M.
,
2017
, “
How Graphene Flexes and Stretches Under Concomitant Bending Couples and Tractions
,”
Meccanica
,
52
(
7
), pp.
1601
1624
.
36.
Favata
,
A.
,
Micheletti
,
A.
,
Podio-Guidugli
,
P.
, and
Pugno
,
N. M.
,
2016
, “
Geometry and Self-Stress of Single-Wall Carbon Nanotubes and Graphene Via a Discrete Model Based on a 2nd-Generation REBO Potential
,”
J. Elasticity
,
125
(
1
), pp.
1
37
.
37.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.
38.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), pp.
783
802
.
39.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent System
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
7000
.
40.
Singh
,
S.
, and
Patel
,
B. P.
,
2015
, “
Nonlinear Elastic Properties of Graphene Sheet Under Finite Deformation
,”
Compos. Struct.
,
119
, pp.
412
421
.
41.
Jiang
,
H.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2005
, “
A Comparison of Different Interatomic Potentials: Radius Effect of Single Wall Carbon Nanotubes
,”
Symposium on Mechanical Behaviour and Micro Mechanics of Nanostructured Materials
, Beijing, China, June 27–30, pp.
121
133
.
42.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Nonlinear Elastic Properties of Graphene Sheet Using MM3 Potential Under Finite Deformation
,”
Composites, Part B
,
136
, pp.
81
91
.
You do not currently have access to this content.