Flexoelectric effect is a universal and size-dependent electromechanical coupling between the strain gradient and electric field. The mathematical framework for flexoelectricity, which involves higher-order gradients of field quantities, is difficult to handle using traditional finite element method (FEM). Thus, it is important to develop an effective numerical method for flexoelectricity. In this paper, we develop a three-dimensional (3D) mixed finite element considering both flexoelectricity and strain gradient elasticity. To validate the developed element, we simulate the electromechanical behavior of a flexoelectric spherical shell subjected to inner pressure and compare the numerical results to analytical results. Their excellent agreement shows the reliability of the proposed FEM. The developed finite element is also used to simulate the electromechanical behavior of a nanometer-sized flexoelectric truncated pyramid. By decreasing the sample size, we observed the increase of its effective piezoelectricity. However, due to the effects of strain gradient elasticity and the influence of flexoelectricity on stiffness, the dependency of effective piezoelectricity on the sample size is not trivial. Numerical results indicate that, when the sample size is smaller than a certain value, the increase of effective piezoelectricity slows down. This finding also shows the importance of a numerical tool for the study of flexoelectric problems.

References

1.
Sharma
,
N.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
2.
Nanthakumar
,
S.
,
Lahmer
,
T.
,
Zhuang
,
X.
,
Zi
,
G.
, and
Rabczuk
,
T.
,
2016
, “
Detection of Material Interfaces Using a Regularized Level Set Method in Piezoelectric Structures
,”
Inverse Probl. Sci. Eng.
,
24
(
1
), pp.
153
176
.
3.
Nanthakumar
,
S.
,
Lahmer
,
T.
, and
Rabczuk
,
T.
,
2014
, “
Detection of Multiple Flaws in Piezoelectric Structures Using XFEM and Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
275
, pp.
98
112
.
4.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
.
5.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
809
823
.
6.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Solid State Commun.
,
5
(
10
), pp.
2069
2070
.
7.
Meyer
,
R. B.
,
1969
, “
Piezoelectric Effects in Liquid Crystals
,”
Phys. Rev. Lett.
,
22
(
18
), p.
918
.
8.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
, pp.
387
421
.
9.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
10.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P.
, and
Scott
,
J.
,
2007
, “
Strain-Gradient-Induced Polarization in SrTiO 3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.
11.
Ma
,
W.
, and
Cross
,
L. E.
,
2006
, “
Flexoelectricity of Barium Titanate
,”
Appl. Phys. Lett.
,
88
(
23
), p.
232902
.
12.
Tagantsev
,
A.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), p.
5883
.
13.
Shu
,
L.
,
Wei
,
X.
,
Jin
,
L.
,
Li
,
Y.
,
Wang
,
H.
, and
Yao
,
X.
,
2013
, “
Enhanced Direct Flexoelectricity in Paraelectric Phase of Ba(Ti0.87Sn0.13)O3 Ceramics
,”
Appl. Phys. Lett.
,
102
(
15
), p.
152904
.
14.
Narvaez
,
J.
, and
Catalan
,
G.
,
2014
, “
Origin of the Enhanced Flexoelectricity of Relaxor Ferroelectrics
,”
Appl. Phys. Lett.
,
104
(
16
), p.
162903
.
15.
Prost
,
J.
, and
Pershan
,
P. S.
,
1976
, “
Flexoelectricity in Nematic and Smectic‐A Liquid Crystals
,”
J. Appl. Phys.
,
47
(
6
), pp.
2298
2312
.
16.
Čepič
,
M.
, and
Žekš
,
B.
,
2001
, “
Flexoelectricity and Piezoelectricity: The Reason for the Rich Variety of Phases in Antiferroelectric Smectic Liquid Crystals
,”
Phys. Rev. Lett.
,
87
(
8
), p.
085501
.
17.
Varanytsia
,
A.
, and
Chien
,
L.-C.
,
2017
, “
Giant Flexoelectro-Optic Effect With Liquid Crystal Dimer CB7CB
,”
Sci. Rep.
,
7
, p.
41333
.
18.
Chu
,
B.
, and
Salem
,
D.
,
2012
, “
Flexoelectricity in Several Thermoplastic and Thermosetting Polymers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
103905
.
19.
Lu
,
J.
,
Lv
,
J.
,
Liang
,
X.
,
Xu
,
M.
, and
Shen
,
S.
,
2016
, “
Improved Approach to Measure the Direct Flexoelectric Coefficient of Bulk Polyvinylidene Fluoride
,”
J. Appl. Phys.
,
119
(
9
), p.
094104
.
20.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
BBA-Biomembranes
,
1561
(
1
), pp.
1
25
.
21.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta
,
568
(
1
), pp.
70
83
.
22.
Ping-Cheng
,
Z.
,
Keleshian
,
A. M.
, and
Sachs
,
F.
,
2001
, “
Voltage-Induced Membrane Movement
,”
Nature
,
413
(
6854
), p.
428
.
23.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
24.
Tagantsev
,
A.
,
1985
, “
Theory of Flexoelectric Effect in Crystals
,”
JETP Lett.
,
88
(
6
), pp.
2108
2122
.http://www.jetp.ac.ru/cgi-bin/dn/e_061_06_1246.pdf
25.
Majdoub
,
M.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
26.
Maranganti
,
R.
,
Sharma
,
N.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
27.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
28.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
29.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
30.
Liang
,
X.
,
Zhang
,
R.
,
Hu
,
S.
, and
Shen
,
S.
,
2017
, “
Flexoelectric Energy Harvesters Based on Timoshenko Laminated Beam Theory
,”
J. Intell. Mater. Syst. Struct.
,
28
(
5
), pp.
2064
2073
.
31.
Gharbi
,
M.
,
Sun
,
Z. H.
,
Sharma
,
P.
, and
White
,
K.
,
2009
, “
The Origins of Electromechanical Indentation Size Effect in Ferroelectrics
,”
Appl. Phys. Lett.
,
95
(
14
), p.
142901
.
32.
Gharbi
,
M.
,
Sun
,
Z. H.
,
Sharma
,
P.
,
White
,
K.
, and
El-Borgi
,
S.
,
2011
, “
Flexoelectric Properties of Ferroelectrics and the Nanoindentation Size-Effect
,”
Int. J. Solids Struct.
,
48
(
2
), pp.
249
256
.
33.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.
34.
Zhu
,
W.
,
Fu
,
J. Y.
,
Li
,
N.
, and
Cross
,
L.
,
2006
, “
Piezoelectric Composite Based on the Enhanced Flexoelectric Effects
,”
Appl. Phys. Lett.
,
89
(
19
), p.
192904
.
35.
Harden
,
J.
,
Mbanga
,
B.
,
Éber
,
N.
,
Fodor-Csorba
,
K.
,
Sprunt
,
S.
,
Gleeson
,
J. T.
, and
Jakli
,
A.
,
2006
, “
Giant Flexoelectricity of Bent-Core Nematic Liquid Crystals
,”
Phys. Rev. Lett.
,
97
(
15
), p.
157802
.
36.
Lu
,
H.
,
Bark
,
C.-W.
,
De Los Ojos
,
D. E.
,
Alcala
,
J.
,
Eom
,
C.-B.
,
Catalan
,
G.
, and
Gruverman
,
A.
,
2012
, “
Mechanical Writing of Ferroelectric Polarization
,”
Science
,
336
(
6077
), pp.
59
61
.
37.
Lee
,
D.
,
Yang
,
S. M.
,
Yoon
,
J.-G.
, and
Noh
,
T. W.
,
2012
, “
Flexoelectric Rectification of Charge Transport in Strain-Graded Dielectrics
,”
Nano Lett.
,
12
(
12
), pp.
6436
6440
.
38.
Kim
,
M.
,
Ham
,
H. G.
,
Choi
,
H.-S.
,
Bos
,
P. J.
,
Yang
,
D.-K.
,
Lee
,
J. H.
, and
Lee
,
S. H.
,
2017
, “
Flexoelectric In-Plane Switching (IPS) Mode With Ultra-High-Transmittance, Low-Voltage, Low-Frequency, and a Flicker-Free Image
,”
Opt. Express
,
25
(
6
), pp.
5962
5971
.
39.
Ahluwalia
,
R.
,
Tagantsev
,
A. K.
,
Yudin
,
P.
,
Setter
,
N.
,
Ng
,
N.
, and
Srolovitz
,
D. J.
,
2014
, “
Influence of Flexoelectric Coupling on Domain Patterns in Ferroelectrics
,”
Phys. Rev. B
,
89
(
17
), p.
174105
.
40.
Chen
,
H.
,
Soh
,
A.
, and
Ni
,
Y.
,
2014
, “
Phase Field Modeling of Flexoelectric Effects in Ferroelectric Epitaxial Thin Films
,”
Acta Mech.
,
225
(
4–5
), p.
1323
.
41.
Chen
,
W.
,
Zheng
,
Y.
,
Feng
,
X.
, and
Wang
,
B.
,
2015
, “
Utilizing Mechanical Loads and Flexoelectricity to Induce and Control Complicated Evolution of Domain Patterns in Ferroelectric Nanofilms
,”
J. Mech. Phys. Solids
,
79
, pp.
108
133
.
42.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
43.
Abdollahi
,
A.
,
Millán
,
D.
,
Peco
,
C.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2015
, “
Revisiting Pyramid Compression to Quantify Flexoelectricity: A Three-Dimensional Simulation Study
,”
Phys. Rev. B
,
91
(
10
), p.
104103
.
44.
Yvonnet
,
J.
, and
Liu
,
L.
,
2017
, “
A Numerical Framework for Modeling Flexoelectricity and Maxwell Stress in Soft Dielectrics at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
450
482
.
45.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
,
1996
, “
Crack Tip Fields in Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
44
(
10
), pp.
1621
1648
.
46.
Shu
,
J.
, and
Fleck
,
N.
,
1998
, “
The Prediction of a Size Effect in Microindentation
,”
Int. J. Solids Struct.
,
35
(
13
), pp.
1363
1383
.
47.
Shu
,
J. Y.
,
King
,
W. E.
, and
Fleck
,
N. A.
,
1999
, “
Finite Elements for Materials With Strain Gradient Effects
,”
Int. J. Numer. Methods Eng.
,
44
(
3
), pp.
373
391
.
48.
Amanatidou
,
E.
, and
Aravas
,
N.
,
2002
, “
Mixed Finite Element Formulations of Strain-Gradient Elasticity Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
15
), pp.
1723
1751
.
49.
Darrall
,
B. T.
,
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2015
, “
Size-Dependent Piezoelectricity: A 2D Finite Element Formulation for Electric Field-Mean Curvature Coupling in Dielectrics
,”
Eur. J. Mech. A Solids
,
49
, pp.
308
320
.
50.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081004
.
51.
Ghasemi
,
H.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2017
, “
A Level-Set Based IGA Formulation for Topology Optimization of Flexoelectric Materials
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
239
258
.
52.
Nanthakumar
,
S.
,
Zhuang
,
X.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2017
, “
Topology Optimization of Flexoelectric Structures
,”
J. Mech. Phys. Solids
,
105
, pp.
217
234
.
53.
Deng
,
Q.
,
2017
, “
Size-Dependent Flexoelectric Response of a Truncated Cone and the Consequent Ramifications for the Experimental Measurement of Flexoelectric Properties
,”
ASME J. Appl. Mech.
,
84
(
10
), p.
101007
.
54.
Hu
,
S.
, and
Shen
,
S.
,
2010
, “
Variational Principles and Governing Equations in Nano-Dielectrics With the Flexoelectric Effect
,”
Sci. China Phys. Mech.
,
53
(
8
), pp.
1497
1504
.
You do not currently have access to this content.