The control of geometric shapes is well acknowledged as one of the facile routes to regulate properties of graphene. Here, we conduct a theoretical study on the evaporation-driven self-folding of a single piece of graphene nanoribbon that is immersed inside a liquid droplet prior, and demonstrate the folded pattern, which is significantly affected by the surface wettability gradient of the graphene nanoribbon. On the basis of energy competition among elastic bending deformation, liquid–graphene interaction and van der Waals force interaction of folded nanoribbons, we propose a theoretical mechanics model to quantitatively probe the relationship among self-folding, surface wettability gradient, and pattern and size of ultimate folded graphene. Full-scale molecular dynamics (MD) simulations are performed to validate the energy competition and the self-folded patterns, and the results show good agreement with theoretical analyses. This study sheds novel insight on folding graphene nanoribbons by leveraging surface wettability and will serve as a theoretical guidance for the controllable shape design of graphene nanoribbons.

References

1.
Peng
,
L.
,
Peng
,
X.
,
Liu
,
B.
,
Wu
,
C.
,
Xie
,
Y.
, and
Yu
,
G.
,
2013
, “
Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors
,”
Nano Lett.
,
13
(
5
), pp.
2151
2157
.
2.
Han
,
M. Y.
,
Özyilmaz
,
B.
,
Zhang
,
Y.
, and
Kim
,
P.
,
2007
, “
Energy Band-Gap Engineering of Graphene Nanoribbons
,”
Phys. Rev. Lett.
,
98
(
20
), p.
206805
.
3.
Gao
,
H.
, and
Duan
,
H.
,
2015
, “
2D and 3D Graphene Materials: Preparation and Bioelectrochemical Applications
,”
Biosens. Bioelectron.
,
65
, pp.
404
419
.
4.
Cranford
,
S.
,
Sen
,
D.
, and
Buehler
,
M. J.
,
2009
, “
Meso-Origami: Folding Multilayer Graphene Sheets
,”
Appl. Phys. Lett.
,
95
(
12
), p.
123121
.
5.
Meng
,
X.
,
Li
,
M.
,
Kang
,
Z.
,
Zhang
,
X.
, and
Xiao
,
J.
,
2013
, “
Mechanics of Self-Folding of Single-Layer Graphene
,”
J. Phys. D: Appl. Phys.
,
46
(
5
), p.
055308
.
6.
Ma
,
X.
,
Zachariah
,
M. R.
, and
Zangmeister
,
C. D.
,
2011
, “
Crumpled Nanopaper From Graphene Oxide
,”
Nano Lett.
,
12
(
1
), pp.
486
489
.
7.
Chen
,
Y.
,
Guo
,
F.
,
Jachak
,
A.
,
Kim
,
S.-P.
,
Datta
,
D.
,
Liu
,
J.
,
Kulaots
,
I.
,
Vaslet
,
C.
,
Jang
,
H. D.
, and
Huang
,
J.
,
2012
, “
Aerosol Synthesis of Cargo-Filled Graphene Nanosacks
,”
Nano Lett.
,
12
(
4
), pp.
1996
2002
.
8.
Han
,
D. J.
,
Jung
,
J. H.
,
Choi
,
J. S.
,
Kim
,
Y. T.
, and
Seo
,
T. S.
,
2013
, “
Synthesis of a 3D Graphite Microball Using a Microfluidic Droplet Generator and Its Polymer Composite With Core–Shell Structure
,”
Lab Chip
,
13
(
20
), pp.
4006
4010
.
9.
Parviz
,
D.
,
Metzler
,
S. D.
,
Das
,
S.
,
Irin
,
F.
, and
Green
,
M. J.
,
2015
, “
Tailored Crumpling and Unfolding of Spray‐Dried Pristine Graphene and Graphene Oxide Sheets
,”
Small
,
11
(
22
), pp.
2661
2668
.
10.
Luo
,
J.
,
Jang
,
H. D.
,
Sun
,
T.
,
Xiao
,
L.
,
He
,
Z.
,
Katsoulidis
,
A. P.
,
Kanatzidis
,
M. G.
,
Gibson
,
J. M.
, and
Huang
,
J.
,
2011
, “
Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets
,”
ACS Nano
,
5
(
11
), pp.
8943
8949
.
11.
Lee
,
S. H.
,
Kim
,
H. W.
,
Hwang
,
J. O.
,
Lee
,
W. J.
,
Kwon
,
J.
,
Bielawski
,
C. W.
,
Ruoff
,
R. S.
, and
Kim
,
S. O.
,
2010
, “
Three-Dimensional Self-Assembly of Graphene Oxide Platelets Into Mechanically Flexible Macroporous Carbon Films
,”
Angew. Chem.
,
122
(
52
), pp.
10282
10286
.
12.
Zang
,
J.
,
Ryu
,
S.
,
Pugno
,
N.
,
Wang
,
Q.
,
Tu
,
Q.
,
Buehler
,
M. J.
, and
Zhao
,
X.
,
2013
, “
Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene
,”
Nat. Mater.
,
12
(
4
), pp.
321
325
.
13.
Kang
,
P.
,
Wang
,
M. C.
,
Knapp
,
P. M.
, and
Nam
,
S.
,
2016
, “
Photodetectors: Crumpled Graphene Photodetector With Enhanced, Strain‐Tunable, and Wavelength‐Selective Photoresponsivity
,”
Adv. Mater.
,
28
(
23
), p. 4565.
14.
Zhang
,
S.
, and
Pan
,
N.
,
2013
, “
Supercapacitor Performance of Crumpled and Planar Graphene Materials Produced by Hydrogen Gas Reduction of Graphene Oxide
,”
J. Mater. Chem. A
,
1
(
27
), pp.
7957
7962
.
15.
Zhou
,
Y.
,
Hu
,
X.-C.
,
Fan
,
Q.
, and
Wen
,
H.-R.
,
2016
, “
Three-Dimensional Crumpled Graphene as an Electro-Catalyst Support for Formic Acid Electro-Oxidation
,”
J. Mater. Chem. A
,
4
(
12
), pp.
4587
4591
.
16.
Dou
,
X.
,
Koltonow
,
A. R.
,
He
,
X.
,
Jang
,
H. D.
,
Wang
,
Q.
,
Chung
,
Y.-W.
, and
Huang
,
J.
,
2016
, “
Self-Dispersed Crumpled Graphene Balls in Oil for Friction and Wear Reduction
,”
Proc. Natl. Acad. Sci.
,
113
(
6
), pp.
1528
1533
.
17.
Schrader
,
M. E.
,
1975
, “
Ultrahigh Vacuum Techniques in the Measurement of Contact Angles—IV: Water on Graphite (0001)
,”
J. Phys. Chem.
,
79
(
23
), pp.
2508
2515
.
18.
Schrader
,
M. E.
,
1980
, “
Ultrahigh-Vacuum Techniques in the Measurement of Contact Angles—5: LEED Study of the Effect of Structure on the Wettability of Graphite
,”
J. Phys. Chem.
,
84
(
21
), pp.
2774
2779
.
19.
Ashraf
,
A.
,
Dastgheib
,
S. A.
,
Mensing
,
G.
, and
Shannon
,
M. A.
,
2013
, “
Surface Characteristics of Selected Carbon Materials Exposed to Supercritical Water
,”
J. Supercrit. Fluids
,
76
, pp.
32
40
.
20.
Li
,
Z.
,
Wang
,
Y.
,
Kozbial
,
A.
,
Shenoy
,
G.
,
Zhou
,
F.
,
McGinley
,
R.
,
Ireland
,
P.
,
Morganstein
,
B.
,
Kunkel
,
A.
, and
Surwade
,
S. P.
,
2013
, “
Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite
,”
Nat. Mater.
,
12
(
10
), pp.
925
931
.
21.
Wang
,
R-G.
, and
Mitsuo
,
K.
,
2006
, “
Analysis of Air Adsorptive on Solid Surfaces by AFM and XPS
,”
Trans. Nonferrous Met. Soc. China
,
16
(Suppl. 2), pp.
s753
s758
.
22.
Hernandez
,
S. C.
,
Bennett
,
C. J.
,
Junkermeier
,
C. E.
,
Tsoi
,
S. D.
,
Bezares
,
F. J.
,
Stine
,
R.
,
Robinson
,
J. T.
,
Lock
,
E. H.
,
Boris
,
D. R.
, and
Pate
,
B. D.
,
2013
, “
Chemical Gradients on Graphene to Drive Droplet Motion
,”
ACS Nano
,
7
(
6
), pp.
4746
4755
.
23.
Feng
,
S.
,
Wang
,
S.
,
Liu
,
C.
,
Zheng
,
Y.
, and
Hou
,
Y.
,
2015
, “
Controlled Droplet Transport on a Gradient Adhesion Surface
,”
Chem. Commun.
,
51
(
27
), pp.
6010
6013
.
24.
Liu
,
Q.
, and
Xu
,
B.
,
2015
, “
Actuating Water Droplets on Graphene Via Surface Wettability Gradients
,”
Langmuir
,
31
(
33
), pp.
9070
9075
.
25.
Liu
,
Q.
, and
Xu
,
B.
,
2016
, “
A Unified Mechanics Model of Wettability Gradient-Driven Motion of Water Droplet on Solid Surfaces
,”
Extreme Mech. Lett.
,
9
(Pt.2), pp.
304
309
.
26.
Wang
,
B.
,
Huang
,
M.
,
Kim
,
N. Y.
,
Cunning
,
B. V.
,
Huang
,
Y.
,
Qu
,
D.
,
Chen
,
X.
,
Jin
,
S.
,
Biswal
,
M.
, and
Zhang
,
X.
,
2017
, “
Controlled Folding of Single Crystal Graphene
,”
Nano Lett.
,
17
(
3
), pp.
1467
1473
.
27.
Ju
,
J.
,
Xiao
,
K.
,
Yao
,
X.
,
Bai
,
H.
, and
Jiang
,
L.
,
2013
, “
Bioinspired Conical Copper Wire With Gradient Wettability for Continuous and Efficient Fog Collection
,”
Adv. Mater.
,
25
(
41
), pp.
5937
5942
.
28.
Hong
,
D.
,
Cho
,
W. K.
,
Kong
,
B.
, and
Choi
,
I. S.
,
2010
, “
Water-Collecting Capability of Radial-Wettability Gradient Surfaces Generated by Controlled Surface Reactions
,”
Langmuir
,
26
(
19
), pp.
15080
15083
.
29.
Werb
,
M.
,
García
,
C. F.
,
Bach
,
N. C.
,
Grumbein
,
S.
,
Sieber
,
S. A.
,
Opitz
,
M.
, and
Lieleg
,
O.
,
2017
, “
Surface Topology Affects Wetting Behavior of Bacillus Subtilis Biofilms
,”
NPJ Biofilms Microbiomes
,
3
(
1
), p.
11
.
30.
Wu
,
J.
,
Mao
,
Z.
,
Tan
,
H.
,
Han
,
L.
,
Ren
,
T.
, and
Gao
,
C.
,
2012
, “
Gradient Biomaterials and Their Influences on Cell Migration
,”
Interface Focus
,
2
(
3
), pp.
337
355
.
31.
Wang
,
W.-N.
,
Jiang
,
Y.
, and
Biswas
,
P.
,
2012
, “
Evaporation-Induced Crumpling of Graphene Oxide Nanosheets in Aerosolized Droplets: Confinement Force Relationship
,”
J. Phys. Chem. Lett.
,
3
(
21
), pp.
3228
3233
.
32.
Plimpton
,
S.
,
Crozier
,
P.
, and
Thompson
,
A.
,
2007
, “
LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator
,” Sandia National Laboratories, Albuquerque, NM.
33.
Mark
,
P.
, and
Nilsson
,
L.
,
2001
, “
Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
,”
J. Phys. Chem. A
,
105
(
43
), pp.
9954
9960
.
34.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
35.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), p.
783
.
36.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Water Channels With Carbon Nanoscrolls
,”
Small
,
6
(
6
), pp.
739
744
.
37.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
97
(
8
), p.
081909
.
38.
Wang
,
B.
,
Huang
,
M.
,
Tao
,
L.
,
Lee
,
S. H.
,
Jang
,
A.-R.
,
Li
,
B.-W.
,
Shin
,
H. S.
,
Akinwande
,
D.
, and
Ruoff
,
R. S.
,
2016
, “
Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns
,”
ACS Nano
,
10
(
1
), pp.
1404
1410
.
39.
Werder
,
T.
,
Walther
,
J. H.
,
Jaffe
,
R. L.
,
Halicioglu
,
T.
, and
Koumoutsakos
,
P.
,
2003
, “
On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes
,”
J. Phys. Chem. B
,
107
(
6
), pp.
1345
1352
.
40.
Yi
,
L.
,
Zhang
,
Y.
,
Wang
,
C.
, and
Chang
,
T.
,
2014
, “
Temperature-Induced Unfolding of Scrolled Graphene and Folded Graphene
,”
J. Appl. Phys.
,
115
(
20
), p.
204307
.
41.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2010
, “
Geometry Controls Conformation of Graphene Sheets: Membranes, Ribbons, and Scrolls
,”
ACS Nano
,
4
(
7
), pp.
3869
3876
.
42.
Wei
,
Y.
,
Wang
,
B.
,
Wu
,
J.
,
Yang
,
R.
, and
Dunn
,
M. L.
,
2012
, “
Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene
,”
Nano Lett.
,
13
(
1
), pp.
26
30
.
43.
Vega
,
C.
, and
De Miguel
,
E.
,
2007
, “
Surface Tension of the Most Popular Models of Water by Using the Test-Area Simulation Method
,”
J. Chem. Phys.
,
126
(
15
), p.
154707
.
44.
Chen
,
F.
, and
Smith
,
P. E.
,
2007
, “
Simulated Surface Tensions of Common Water Models
,”
J. Chem. Phys.
,
126
, p. 221101.
45.
Zhang
,
X.
,
Sui
,
Z.
,
Xu
,
B.
,
Yue
,
S.
,
Luo
,
Y.
,
Zhan
,
W.
, and
Liu
,
B.
,
2011
, “
Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electrochemical Power Sources
,”
J. Mater. Chem.
,
21
(
18
), pp.
6494
6497
.
You do not currently have access to this content.