Serpentine interconnects are highly stretchable and frequently used in flexible electronic systems. In this work, we show that the undulating geometry of the serpentine interconnects will generate phononic band gaps to manipulate elastic wave propagation. The interesting effect of “bands-sticking-together” is observed. We further illustrate that the band structures of the serpentine interconnects can be tuned by applying prestretch deformation. The discovery offers a way to design stretchable and tunable phononic crystals by using metallic interconnects instead of the conventional design with soft rubbers and unfavorable damping.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Laude
,
V.
,
2015
,
Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves
, Vol.
26
,
Walter de Gruyter GmbH
, Berlin.
3.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
(
12
), p.
121910
.
4.
Barnwell
,
E. G.
,
Parnell
,
W. J.
, and
David Abrahams
,
I.
,
2017
, “
Tunable Elastodynamic Band Gaps
,”
Extreme Mech. Lett.
,
12
, pp.
23
29
.
5.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
.
6.
Galich
,
P. I.
,
Fang
,
N. X.
,
Boyce
,
M. C.
, and
Rudykh
,
S.
,
2017
, “
Elastic Wave Propagation in Finitely Deformed Layered Materials
,”
J. Mech. Phys. Solids
,
98
, pp.
390
410
.
7.
Robillard
,
J.-F.
,
Bou Matar
,
O.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Stippinger
,
M.
,
Hladky-Hennion
,
A.-C.
,
Pennec
,
Y.
, and
Djafari-Rouhani
,
B.
,
2009
, “
Tunable Magnetoelastic Phononic Crystals
,”
Appl. Phys. Lett.
,
95
(
12
), p.
124104
.
8.
Shmuel
,
G.
,
2013
, “
Electrostatically Tunable Band Gaps in Finitely Extensible Dielectric Elastomer Fiber Composites
,”
Int. J. Solids Struct.
,
50
(
5
), pp.
680
686
.
9.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Soft Phononic Crystals With Deformation-Independent Band Gaps
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20160865
.
10.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
11.
Babaee
,
S.
,
Viard
,
N.
,
Wang
,
P.
,
Fang
,
N. X.
, and
Bertoldi
,
K.
,
2016
, “
Harnessing Deformation to Switch On and Off the Propagation of Sound
,”
Adv. Mater.
,
28
(
8
), pp.
1631
1635
.
12.
Lu
,
N.
, and
Kim
,
D.-H.
,
2014
, “
Flexible and Stretchable Electronics Paving the Way for Soft Robotics
,”
Soft Rob.
,
1
(
1
), pp.
53
62
.
13.
Lv
,
C.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Archimedean Spiral Design for Extremely Stretchable Interconnects
,”
Extreme Mech. Lett.
,
1
, pp.
29
34
.
14.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
15.
Zhang
,
Y.
,
Fu
,
H.
,
Su
,
Y.
,
Xu
,
S.
,
Cheng
,
H.
,
Fan
,
J. A.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Mechanics of Ultra-Stretchable Self-Similar Serpentine Interconnects
,”
Acta Mater.
,
61
(
20
), pp.
7816
7827
.
16.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2015
, “
Wave Propagation in Periodically Undulated Beams and Plates
,”
Int. J. Solids Struct.
,
75–76
, pp.
260
276
.
17.
Becker
,
L. E.
,
Chassie
,
G. G.
, and
Cleghorn
,
W. L.
,
2002
, “
On the Natural Frequencies of Helical Compression Springs
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
825
841
.
18.
Pearson
,
D.
,
1982
, “
The Transfer Matrix Method for the Vibration of Compressed Helical Springs
,”
J. Mech. Eng. Sci.
,
24
(
4
), pp.
163
171
.
19.
Frikha
,
A.
,
Treyssede
,
F.
, and
Cartraud
,
P.
,
2011
, “
Effect of Axial Load on the Propagation of Elastic Waves in Helical Beams
,”
Wave Motion
,
48
(
1
), pp.
83
92
.
20.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2010
,
Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells
,
Oxford University Press
, Oxford, UK.
21.
Neukirch
,
S.
,
Frelat
,
J.
,
Goriely
,
A.
, and
Maurini
,
C.
,
2012
, “
Vibrations of Post-Buckled Rods: The Singular Inextensible Limit
,”
J. Sound Vib.
,
331
(
3
), pp.
704
720
.
22.
Ogden
,
R. W.
,
2007
, “
Incremental Statics and Dynamics of Pre-Stressed Elastic Materials
,”
Waves in Nonlinear Pre-Stressed Materials
,
Springer
, New York, pp.
1
26
.
23.
Bellman
,
R.
,
1997
,
Introduction to Matrix Analysis
,
SIAM
,
Philadelphia, PA
.
24.
Maurin
,
F.
, and
Spadoni
,
A.
,
2014
, “
Wave Dispersion in Periodic Post-Buckled Structures
,”
J. Sound Vib.
,
333
(
19
), pp.
4562
4578
.
25.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2016
, “
Wave Propagation in Undulated Structural Lattices
,”
Int. J. Solids Struct.
,
97–98
, pp.
431
444
.
26.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poissons Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
27.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Jorio
,
A.
,
2007
,
Group Theory: Application to the Physics of Condensed Matter
,
Springer Science & Business Media
, Berlin.
28.
Mock
,
A.
,
Lu
,
L.
, and
O'Brien
,
J.
,
2010
, “
Space Group Theory and Fourier Space Analysis of Two-Dimensional Photonic Crystal Waveguides
,”
Phys. Rev. B
,
81
(
15
), p.
155115
.
You do not currently have access to this content.