The energy absorption capacity of origami crash boxes (OCB) subjected to oblique loading is investigated in the present study. A conventional square tube (CST) with identical weight is employed as benchmark. The comparative study reveals that the origami crash box is more desirable than the conventional square tube in most of the range of load angle. A parameter study is performed to assess the effect of geometry parameters on the energy absorption characteristics. The geometry parameters are tube length L, tube width b, module length l, and width of folded lobe c. Considering that bamboo with large slenderness ratio could effectively resist wind load, a bulkhead-reinforced origami crash box is proposed as a high-performance energy absorption device. And an optimum structure designed based on the parameter study is investigated. The result suggests that the proposed tube performs much better than the original design.

References

1.
Alexander
,
J.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
.
2.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
.
3.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Circular Tubes
,”
Int. J. Impact Eng.
,
2
(
3
), pp.
263
281
.
4.
Fan
,
Z.
,
Lu
,
G.
,
Yu
,
T. X.
, and
Liu
,
K.
,
2013
, “
Axial Crushing of Triangular Tubes
,”
Int. J. Appl. Mech.
,
05
(
01
), p.
1350008
.
5.
Wang
,
P.
,
Zheng
,
Q.
,
Fan
,
H.
,
Sun
,
F.
,
Jin
,
F.
, and
Qu
,
Z.
,
2015
, “
Quasi-Static Crushing Behaviors and Plastic Analysis of Thin-Walled Triangular Tubes
,”
J. Constr. Steel Res.
,
106
, pp.
35
43
.
6.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(4a), pp.
727
734
.
7.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
8.
Song
,
J.
,
Zhou
,
Y.
, and
Guo
,
F.
,
2013
, “
A Relationship Between Progressive Collapse and Initial Buckling for Tubular Structures Under Axial Loading
,”
Int. J. Mech. Sci.
,
75
, pp.
200
211
.
9.
Zhang
,
X.
, and
Zhang
,
H.
,
2012
, “
Experimental and Numerical Investigation on Crush Resistance of Polygonal Columns and Angle Elements
,”
Thin-Walled Struct.
,
57
, pp.
25
36
.
10.
Fan
,
Z.
,
Lu
,
G.
, and
Liu
,
K.
,
2013
, “
Quasi-Static Axial Compression of Thin-Walled Tubes With Different Cross-Sectional Shapes
,”
Eng. Struct.
,
55
, pp.
80
89
.
11.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Ioannidis
,
M. B.
,
Kostazos
,
P. K.
, and
Dimitriou
,
C.
,
2003
, “
Finite Element Simulation of the Axial Collapse of Metallic Thin-Walled Tubes With Octagonal Cross-Section
,”
Thin-Walled Struct.
,
41
(
10
), pp.
891
900
.
12.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Baldoukas
,
A. K.
, and
Viegelahn
,
G. L.
,
1991
, “
Energy Dissipation and Associated Failure Modes When Axially Loading Polygonal Thin-Walled Cylinders
,”
Thin-Walled Struct.
,
12
(
1
), pp.
17
34
.
13.
Yang
,
S.
, and
Qi
,
C.
,
2013
, “
Multiobjective Optimization for Empty and Foam-Filled Square Columns Under Oblique Impact Loading
,”
Int. J. Impact. Eng.
,
54
, pp.
177
191
.
14.
Han
,
D. C.
, and
Park
,
S. H.
,
1999
, “
Collapse Behavior of Square Thin-Walled Columns Subjected to Oblique Loads
,”
Thin-Walled Struct.
,
35
(
3
), pp.
167
184
.
15.
Reyes
,
A.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2002
, “
Crashworthiness of Aluminum Extrusions Subjected to Oblique Loading: Experiments and Numerical Analyses
,”
Int. J. Mech. Sci.
,
44
(
9
), pp.
1965
1984
.
16.
Reyes
,
A.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2003
, “
Square Aluminum Tubes Subjected to Oblique Loading
,”
Int. J. Impact Eng.
,
28
(
10
), pp.
1077
1106
.
17.
C.E.C.F. Standardisation
,
2004
, “
Eurocode 9: Design of Aluminium Structures—Part 1.1: General Structural Rules
,” European Committee for Standardization, Brussels, Belgium, Standard No.
EN 1999-1-1:2007/A2
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjSx8aUk-_UAhXIMz4KHcxkAmAQFgglMAA&url=https%3A%2F%2Finfostore.saiglobal.com%2Fstore%2FPreviewDoc.aspx%3FsaleItemID%3D894420&usg=AFQjCNFa9pXsjWDMzng_zuDFqxN9EK4Rnw.
18.
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Reyes
,
A.
,
Langseth
,
M.
,
Solomos
,
G.
, and
Dyngeland
,
T.
,
2003
, “
Empty and Foam-Filled Circular Aluminium Tubes Subjected to Axial and Oblique Quasistatic Loading
,”
Int. J. Crashworthiness
,
8
(
5
), pp.
481
494
.
19.
Reyes
,
A.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2004
, “
Aluminum Foam-Filled Extrusions Subjected to Oblique Loading: Experimental and Numerical Study
,”
Int. J. Solids Struct.
,
41
(5–6), pp.
1645
1675
.
20.
Reid
,
S. R.
, and
Reddy
,
T. Y.
,
1986
, “
Static and Dynamic Crushing of Tapered Sheet Metal Tubes of Rectangular Cross-Section
,”
Int. J. Mech. Sci.
,
28
(
9
), pp.
623
637
.
21.
Karbhari
,
V. M.
, and
Chaoling
,
X.
,
2003
, “
Energy Absorbing Characteristics of Circular Frustra
,”
Int. J. Crashworthiness
,
8
(
5
), pp.
471
479
.
22.
Qi
,
C.
,
Yang
,
S.
, and
Dong
,
F.
,
2012
, “
Crushing Analysis and Multiobjective Crashworthiness Optimization of Tapered Square Tubes Under Oblique Impact Loading
,”
Thin-Walled Struct.
,
59
, pp.
103
119
.
23.
Song
,
J.
,
2013
, “
Numerical Simulation on Windowed Tubes Subjected to Oblique Impact Loading and a New Method for the Design of Obliquely Loaded Tubes
,”
Int. J. Impact Eng.
,
54
, pp.
192
205
.
24.
Song
,
J.
, and
Guo
,
F.
,
2013
, “
A Comparative Study on the Windowed and Multi-Cell Square Tubes Under Axial and Oblique Loading
,”
Thin-Walled Struct
,
66
, pp.
9
14
.
25.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(1), p.
011003
.
26.
Zhou
,
C.
,
Wang
,
B.
,
Ma
,
J.
, and
You
,
Z.
,
2016
, “
Dynamic Axial Crushing of Origami Crash Boxes
,”
Int. J. Mech. Sci.
,
118
, pp.
1
12
.
27.
Wang
,
B.
, and
Zhou
,
C.
,
2017
, “
The Imperfection-Sensitivity of Origami Crash Boxes
,”
Int. J. Mech. Sci.
,
121
, pp.
58
66
.
28.
Zhou
,
C.
,
Zhou
,
Y.
, and
Wang
,
B.
,
2017
, “
Crashworthiness Design for Trapezoid Origami Crash Boxes
,”
Thin-Walled Struct.
,
117
, pp.
257
267
.
29.
ABAQUS
,
2013
, “
abaqus Analysis User's Guide, Documentation Version 6.13
,”
Dassault Systems Simulia Corp.
, Providence, RI.http://abaqus.software.polimi.it/v6.13/books/usb/default.htm?startat=pt06ch32s09alm54.html
30.
Nagel
,
G. M.
, and
Thambiratnam
,
D. P.
,
2006
, “
Dynamic Simulation and Energy Absorption of Tapered Thin-Walled Tubes Under Oblique Impact Loading
,”
Int. J. Impact Eng.
,
32
(
10
), pp.
1595
1620
.
31.
Liu
,
S.
,
Tong
,
Z.
,
Tang
,
Z.
,
Liu
,
Y.
, and
Zhang
,
Z.
,
2015
, “
Bionic Design Modification of Non-Convex Multi-Corner Thin-Walled Columns for Improving Energy Absorption Through Adding Bulkheads
,”
Thin-Walled Struct
,
88
, pp.
70
81
.
You do not currently have access to this content.