We analyze small amplitude shear waves (SWs) propagating in dielectric elastomer (DE) laminates subjected to finite deformations and electrostatic excitations. First, we derive long wave estimates for phase and group velocities of the shear waves propagating in any direction in DE laminates subjected to any homogenous deformation in the presence of an electric filed. To this end, we utilize a micromechanics-based energy potential for layered media with incompressible phases described by neo-Hookean ideal DE model. The long wave estimates reveal the significant influence of electric field on the shear wave propagation. However, there exists a configuration, for which electric field does not influence shear waves directly, and can only alter the shear waves through deformation. We study this specific configuration in detail, and derive an exact solution for the steady-state small amplitude waves propagating in the direction perpendicular to the finitely deformed DE layers subjected to electrostatic excitation. In agreement with the long wave estimate, the exact dispersion relation and the corresponding shear wave band gaps (SBGs)—forbidden frequency regions—are not influenced by electric field. However, SBGs in DE laminates with highly nonlinear electroelastic phases still can be manipulated by electric field through electrostatically induced deformation. In particular, SBGs in DE laminates with electroelastic Gent phases widen and shift toward higher frequencies under application of an electric field perpendicular to the layers. However, in laminates with neo-Hookean ideal DE phases, SBGs are not influenced either by electric field or by deformation. This is due to the competing mechanisms of two governing factors: changes in geometry and material properties induced by deformation. In this particular case, these two competing factors entirely cancel each other.

References

1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.-B.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges
, Vol.
136
,
SPIE Press
,
Bellingham, WA
.
3.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Nonlinear Mech.
,
47
(
2
), pp.
206
209
.
4.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
5.
McKay
,
T.
,
O'Brien
,
B.
,
Calius
,
E.
, and
Anderson
,
I.
,
2010
, “
An Integrated, Self-Priming Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
97
(
6
), p.
062911
.
6.
Kornbluh
,
R. D.
,
Pelrine
,
R.
,
Prahlad
,
H.
,
Wong-Foy
,
A.
,
McCoy
,
B.
,
Kim
,
S.
,
Eckerle
,
J.
, and
Low
,
T.
,
2012
, “
From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting
,”
Electroactivity in Polymeric Materials
,
Springer
,
Berlin
, pp.
67
93
.
7.
Rudykh
,
S.
, and
Boyce
,
M.
,
2014
, “
Transforming Wave Propagation in Layered Media Via Instability-Induced Interfacial Wrinkling
,”
Phys. Rev. Lett.
,
112
(
3
), p.
034301
.
8.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2015
, “
Influence of Stiffening on Elastic Wave Propagation in Extremely Deformed Soft Matter: From Nearly Incompressible to Auxetic Materials
,”
Extreme Mech. Lett.
,
4
, pp.
156
161
.
9.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2015
, “
Comment on “Disentangling Longitudinal and Shear Elastic Waves by neo-Hookean Soft Devices” [Appl. Phys. Lett., 106, 161903 (2015)]
,”
Appl. Phys. Lett.
,
107
(
5
), p.
056101
.
10.
Galich
,
P. I.
,
Slesarenko
,
V.
, and
Rudykh
,
S.
,
2017
, “
Shear Wave Propagation in Finitely Deformed 3D Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
,
110–111
, pp.
294
304
.
11.
Gei
,
M.
,
Roccabianca
,
S.
, and
Bacca
,
M.
,
2011
, “
Controlling Bandgap in Electroactive Polymer-Based Structures
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
102
107
.
12.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2016
, “
Manipulating Pressure and Shear Elastic Waves in Dielectric Elastomers Via External Electric Stimuli
,”
Int. J. Solids Struct.
,
91
, pp.
18
25
.
13.
Wu
,
B.
,
Su
,
Y.
,
Chen
,
W.
, and
Zhang
,
C.
,
2017
, “
On Guided Circumferential Waves in Soft Electroactive Tubes Under Radially Inhomogeneous Biasing Fields
,”
J. Mech. Phys. Solids
,
99
, pp.
116
145
.
14.
Yang
,
W.-P.
, and
Chen
,
L.-W.
,
2008
, “
The Tunable Acoustic Band Gaps of Two-Dimensional Phononic Crystals With a Dielectric Elastomer Cylindrical Actuator
,”
Smart Mater. Struct.
,
17
(
1
), p.
015011
.
15.
Celli
,
P.
,
Gonella
,
S.
,
Tajeddini
,
V.
,
Muliana
,
A.
,
Ahmed
,
S.
, and
Ounaies
,
Z.
,
2017
, “
Wave Control Through Soft Microstructural Curling: Bandgap Shifting, Reconfigurable Anisotropy and Switchable Chirality
,”
Smart Mater. Struct.
,
26
(
3
), p.
035001
.
16.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
Arch. Ration. Mech. Anal.
,
5
, pp.
849
915
.
17.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta. Mech.
,
174
(3–4), pp.
167
183
.
18.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
581
590
.
19.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.
20.
Cohen
,
N.
,
Dayal
,
K.
, and
deBotton
,
G.
,
2016
, “
Electroelasticity of Polymer Networks
,”
J. Mech. Phys. Solids
,
92
, pp.
105
126
.
21.
deBotton
,
G.
,
Tevet-Deree
,
L.
, and
Socolsky
,
E. A.
,
2007
, “
Electroactive Heterogeneous Polymers: Analysis and Applications to Laminated Composites
,”
Mech. Adv. Mater. Struct.
,
14
(
1
), pp.
13
22
.
22.
Tian
,
L.
,
Tevet-Deree
,
L.
,
deBotton
,
G.
, and
Bhattacharya
,
K.
,
2012
, “
Dielectric Elastomer Composites
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
181
198
.
23.
Rudykh
,
S.
,
Lewinstein
,
A.
,
Uner
,
G.
, and
deBotton
,
G.
,
2013
, “
Analysis of Microstructural Induced Enhancement of Electromechanical Coupling in Soft Dielectrics
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151905
.
24.
Rudykh
,
S.
, and
deBotton
,
G.
,
2011
, “
Stability of Anisotropic Electroactive Polymers With Application to Layered Media
,”
Z. Angew. Math. Phys.
,
62
(
6
), pp.
1131
1142
.
25.
Bertoldi
,
K.
, and
Gei
,
M.
,
2011
, “
Instabilities in Multilayered Soft Dielectrics
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
18
42
.
26.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2014
, “
Multiscale Instabilities in Soft Heterogeneous Dielectric Elastomers
,”
Proc. R. Soc. A
,
470
(2162), p.
20130618
.
27.
Abu-Salih
,
S.
,
2017
, “
Analytical Study of Electromechanical Buckling of a Micro Spherical Elastic Film on a Compliant Substrate—Part I: Formulation and Linear Buckling of Periodic Patterns
,”
Int. J. Solids Struct.
,
109
, pp.
180
188
.
28.
Goshkoderia
,
A.
, and
Rudykh
,
S.
,
2017
, “
Electromechanical Macroscopic Instabilities in Soft Dielectric Elastomer Composites With Periodic Microstructures
,”
Eur. J. Mech. A
,
65
, pp.
243
256
.
29.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2010
, “
Electroelastic Waves in a Finitely Deformed Electroactive Material
,”
IMA J. Appl. Math.
,
75
(
4
), pp.
603
636
.
30.
Shmuel
,
G.
, and
deBotton
,
G.
,
2012
, “
Band-Gaps in Electrostatically Controlled Dielectric Laminates Subjected to Incremental Shear Motions
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1970
1981
.
31.
Kolle
,
M.
,
Lethbridge
,
A.
,
Kreysing
,
M.
,
Baumberg
,
J.
,
Aizenberg
,
J.
, and
Vukusic
,
P.
,
2013
, “
Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers
,”
Adv. Mater.
,
25
(
15
), pp.
2239
2245
.
32.
Rudykh
,
S.
,
Ortiz
,
C.
, and
Boyce
,
M.
,
2015
, “
Flexibility and Protection by Design: Imbricated Hybrid Microstructures of Bio-Inspired Armor
,”
Soft Matter
,
11
(
13
), pp.
2547
2554
.
33.
Slesarenko
,
V.
, and
Rudykh
,
S.
,
2016
, “
Harnessing Viscoelasticity and Instabilities for Tuning Wavy Patterns in Soft Layered Composites
,”
Soft Matter
,
12
(
16
), pp.
3677
3682
.
34.
Rytov
,
S.
,
1956
, “
Acoustical Properties of a Thinly Laminated Medium
,”
Sov. Phys. Acoust.
,
2
, pp.
68
80
.
35.
Shmuel
,
G.
, and
deBotton
,
G.
,
2017
, “
Corrigendum to ‘Band-Gaps in Electrostatically Controlled Dielectric Laminates Subjected to Incremental Shear Motions’ [J. Mech. Phys. Solids, 60 (2012) 1970–1981]
,”
J. Mech. Phys. Solids
,
105
, pp.
21
24
.
36.
Galich
,
P. I.
,
Fang
,
N. X.
,
Boyce
,
M. C.
, and
Rudykh
,
S.
,
2017
, “
Elastic Wave Propagation in Finitely Deformed Layered Materials
,”
J. Mech. Phys. Solids
,
98
, pp.
390
410
.
37.
Spinelli
,
S. A.
, and
Lopez-Pamies
,
O.
,
2015
, “
Some Simple Explicit Results for the Elastic Dielectric Properties and Stability of Layered Composites
,”
Int. J. Eng. Sci.
,
88
, pp.
15
28
.
38.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.
39.
Musgrave
,
M.
,
1970
,
Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals
,
Holden-Day
,
San Francisco, CA
.
40.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media: With Applications to Composites
,
Elsevier Science
,
New York
.
41.
Langenberg
,
K. J.
,
Marklein
,
R.
, and
Mayer
,
K.
,
2010
, “
Energy vs. Group Velocity for Elastic Waves in Homogeneous Anisotropic Solid Media
,”
IEEE URSI International Symposium on Electromagnetic Theory
(
EMTS
), Berlin, Aug. 16–19, pp.
733
736
.
42.
Tiersten
,
H. F.
,
1963
, “
Thickness Vibrations of Piezoelectric Plates
,”
J. Acoust. Soc. Am.
,
35
(
1
), pp.
53
58
.
43.
Shmuel
,
G.
, and
Band
,
R.
,
2016
, “
Universality of the Frequency Spectrum of Laminates
,”
J. Mech. Phys. Solids
,
92
, pp.
127
136
.
44.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
45.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
46.
Babaee
,
S.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Three-Dimensional Adaptive Soft Phononic Crystals
,”
J. Appl. Phys.
,
117
(
24
), p.
244903
.
You do not currently have access to this content.