A novel tetrachiral and antitetrachiral hybrid metastructure is proposed, and its in-plane mechanical properties are studied through strain energy analysis. Based on rigid ring rotation assumption, the analytical expression for the in-plane modulus of anisotropic tetrachiral and antitetrachiral hybrid metastructure is derived, and in-plane tensile experimental test and finite element simulation are performed and compared with the theoretical models. The corresponding in-plane anisotropic mechanical properties can be tuned with three independent dimensionless geometrical parameters, and effects of dimensionless geometrical parameters on the in-plane mechanical properties are studied systematically. Finally, an innovative tetrachiral and antitetrachiral hybrid metastructure stent is designed, and its mechanical behaviors under uniaxial tensile loading are investigated. It is found that the designed tetrachiral and antitetrachiral hybrid stent shows negative Poisson ratio properties, and the axial and circumferential deformation can be controlled through adjusting the spacing of unit cell along axial and circumferential directions.

References

1.
Kelvin
,
L.
,
1904
,
Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light
,
C. J. Clay and Sons
,
London
.
2.
Alderson
,
A.
,
Alderson
,
K. L.
,
Attard
,
D.
,
Evans
,
K. E.
,
Gatt
,
R.
,
Grima
,
J. N.
,
Miller
,
W.
,
Ravirala
,
N.
,
Smith
,
C. W.
, and
Zied
,
K.
,
2010
, “
Elastic Constants of 3-, 4- and 6-Connected Chiral and Anti-Chiral Honeycombs Subject to Uniaxial in-Plane Loading
,”
Comp. Sci. Tech.
,
70
(
7
), pp.
1042
1048
.
3.
Novak
,
N.
,
Vesenjak
,
M.
, and
Ren
,
Z.
,
2016
, “
Auxetic Cellular Materials—A Review
,”
Strojniškivestnik: J. Mech. Eng.
,
62
(
9
), pp.
485
493
.
4.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson's Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
5.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Hashemi
,
H. N.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-Chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theor. Appl. Mech. Lett.
,
6
(
2
), pp.
81
96
.
6.
Chen
,
Y. J.
,
Scarpa
,
F.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2013
, “
Elasticity of Anti-Tetrachiral Anisotropic Lattices
,”
Int. J. Solids Struct.
,
50
(
6
), pp.
996
1004
.
7.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2012
, “
Elasto-Static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
156
171
.
8.
Spadoni
,
A.
,
2008
, “
Application of Chiral Cellular Materials for the Design of Innovative Components
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
9.
Bacigalupo
,
A.
, and
Bellis
,
M. L.
,
2015
, “
Auxetic Anti-Tetrachiral Materials: Equivalent Elastic Properties and Frequency Band-Gaps
,”
Comput. Struct.
,
131
, pp.
530
544
.
10.
Bacigalupo
,
A.
, and
Gambarotta
,
L.
,
2014
, “
Homogenization of Periodic Hexa- and Tetrachiral Cellular Solids
,”
Comput. Struct.
,
116
, pp.
461
476
.
11.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1907
1921
.
12.
Chen
,
Y.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
Q. P.
, and
Zheng
,
Q. S.
,
2013
, “
Micropolar Continuum Modelling of Bi-Dimensional Tetrachiral Lattices
,”
Proc. R. Soc. A
,
470
(
2165
), p.
20130734
.
13.
Makeitfrom.com
, 2009, “
Grade 5 (Ti–6Al–4V, 3.7165, R56400) Titanium
,” Lake Mary, FL, accessed June 6, 2017, http://www.makeitfrom.com/material-properties/Grade-5-Ti-6Al-4V-3.7165-R56400-Titanium/
14.
Bhullar
,
S. K.
,
Mawanane
,
H. A. T.
,
Alderson
,
A.
,
Alderson
,
K.
, and
Martin
,
B. G. J.
,
2013
, “
Influence of Negative Poisson's Ratio on Stent Applications
,”
Adv. Mater.
,
2
(
3
), pp.
42
47
.
You do not currently have access to this content.