We proposed an eccentric ellipse criterion to describe the failure of amorphous materials under a combination of normal stress σ and shear stress τ. This criterion can reflect a tension–compression strength asymmetry, and unify four previous failure criteria in the σ–τ stress space, including von Mises criterion, Drucker–Prager criterion, Christensen criterion, and ellipse criterion. We examined the validity of the eccentric ellipse criterion in the tensile-shear failure regimes using the results from our atomistic simulations for two typical amorphous CuZr and LiSi, and recent tension–torsion experiments on metallic glasses. The predictions from the eccentric ellipse criterion agree well with these results from atomistic simulations and experiments. It indicates that this eccentric ellipse criterion is essential for the tensile-shear failure of amorphous materials.

References

1.
Wang
,
W.
,
2012
, “
The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses
,”
Prog. Mater. Sci.
,
57
(
3
), pp.
487
656
.
2.
Greer
,
A. L.
,
Cheng
,
Y.
, and
Ma
,
E.
,
2013
, “
Shear Bands in Metallic Glasses
,”
Mater. Sci. Eng. R
,
74
(
4
), pp.
71
132
.
3.
Chon
,
M. J.
,
Sethuraman
,
V. A.
,
McCormick
,
A.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2011
, “
Real-Time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon
,”
Phys. Rev. Lett.
,
107
(
4
), p.
045503
.
4.
McDowell
,
M. T.
,
Xia
,
S.
, and
Zhu
,
T.
,
2016
, “
The Mechanics of Large-Volume-Change Transformations in High-Capacity Battery Materials
,”
Extreme Mech. Lett.
,
9
(Part 3), pp.
480
494
.
5.
Ding
,
B.
,
Li
,
X.
,
Zhang
,
X.
,
Wu
,
H.
,
Xu
,
Z.
, and
Gao
,
H.
,
2015
, “
Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,”
Nano Energy
,
18
, pp.
89
96
.
6.
Wang
,
X.
,
Fan
,
F.
,
Wang
,
J.
,
Wang
,
H.
,
Tao
,
S.
,
Yang
,
A.
,
Liu
,
Y.
,
Chew
,
H. B.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Xia
,
S.
,
2015
, “
High Damage Tolerance of Electrochemically Lithiated Silicon
,”
Nat. Commun.
,
6
, p.
8417
.
7.
Zhang
,
Z. F.
,
He
,
G.
,
Eckert
,
J.
, and
Schultz
,
L.
,
2003
, “
Fracture Mechanisms in Bulk Metallic Glassy Materials
,”
Phys. Rev. Lett.
,
91
(
4
), p.
045505
.
8.
Zhang
,
Z. F.
, and
Eckert
,
J.
,
2005
, “
Unified Tensile Fracture Criterion
,”
Phys. Rev. Lett.
,
94
(
9
), p.
094301
.
9.
Schuh
,
C. A.
, and
Lund
,
A. C.
,
2003
, “
Atomistic Basis for the Plastic Yield Criterion of Metallic Glass
,”
Nat. Mater.
,
2
(
7
), pp.
449
452
.
10.
Vaidyanathan
,
R.
,
Dao
,
M.
,
Ravichandran
,
G.
, and
Suresh
,
S.
,
2001
, “
Study of Mechanical Deformation in Bulk Metallic Glass Through Instrumented Indentation
,”
Acta Mater.
,
49
(
18
), pp.
3781
3789
.
11.
Patnaik
,
M. N. M.
,
Narasimhan
,
R.
, and
Ramamurty
,
U.
,
2004
, “
Spherical Indentation Response of Metallic Glasses
,”
Acta Mater.
,
52
(
11
), pp.
3335
3345
.
12.
Thamburaja
,
P.
,
Klusemann
,
B.
,
Adibi
,
S.
, and
Bargmann
,
S.
,
2015
, “
The Plastic Yield and Flow Behavior in Metallic Glasses
,”
Appl. Phys. Lett.
,
106
(
5
), p.
051903
.
13.
Qu
,
R. T.
, and
Zhang
,
Z. F.
,
2013
, “
A Universal Fracture Criterion for High-Strength Materials
,”
Sci. Rep.
,
3
(
1
), p.
1117
.
14.
Chen
,
Y.
,
Jiang
,
M. Q.
,
Wei
,
Y. J.
, and
Dai
,
L. H.
,
2011
, “
Failure Criterion for Metallic Glasses
,”
Philos. Mag.
91
(
36
), pp.
4536
4554
.
15.
Wei
,
Y.
,
2012
, “
An Extended Strain Energy Density Failure Criterion by Differentiating Volumetric and Distortional Deformation
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1117
1126
.
16.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, pp.
349
361
.
17.
Zhang
,
S.
,
2017
, “
Chemomechanical Modeling of Lithiation-Induced Failure in High-Volume-Change Electrode Materials for Lithium Ion Batteries
,”
NPJ Comput. Mater.
,
3
(
1
), p.
7
.
18.
Zhao
,
K.
,
Li
,
Y.
, and
Brassart
,
L.
,
2013
, “
Pressure-Sensitive Plasticity of Lithiated Silicon in Li-Ion Batteries
,”
Acta Mech. Sinica
,
29
(
3
), pp.
379
387
.
19.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis for Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
20.
Christensen
,
R. M.
,
1997
, “
Yield Functions/Failure Criteria for Isotropic Materials
,”
Proc. R. Soc. London
,
453
(
1962
), pp.
1473
1491
.
21.
Christensen
,
R. M.
,
2014
, “
Failure Mechanics-Part I: The Coordination Between Elasticity Theory and Failure Theory for All Isotropic Materials
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081001
.
22.
Christensen
,
R. M.
,
2016
, “
Evaluation of Ductile/Brittle Failure Theory and Derivation of the Ductile/Brittle Transition Temperature
,”
ASME J. Appl. Mech.
,
83
(2), p.
021001
.
23.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
24.
Mendelev
,
M. I.
,
Sordelet
,
D. J.
, and
Kramer
,
M. J.
,
2007
, “
Using Atomistic Computer Simulations to Analyze X-Ray Diffraction Data From Metallic Glasses
,”
J. Appl. Phys.
,
102
(
4
), p.
043501
.
25.
Cui
,
Z.
,
Gao
,
F.
,
Cui
,
Z.
, and
Qu
,
J.
,
2012
, “
A Second Nearest-Neighbor Embedded Atom Method Interatomic Potential for Li–Si Alloys
,”
J. Power Sources
,
207
, pp.
150
159
.
26.
Lei
,
X.
,
Wei
,
Y.
,
Wei
,
B.
, and
Wang
,
W.
,
2015
, “
Spiral Fracture in Metallic Glasses and Its Correlation With Failure Criterion
,”
Acta Mater.
,
99
, pp.
206
212
.
You do not currently have access to this content.