We studied the stability of a confined rod under axial vibrations through a combination of analytical and numerical analysis. We find that the stability of the system is significantly different than in the static case and that both the frequency and magnitude of the applied vibrational force play an important role. In particular, while larger vibrational forces always tend to destabilize the system, our analysis indicates that the effect of the frequency is not obvious and monotonic. For certain frequencies, a very small force is sufficient to trigger an instability, while for others the rod is stable even for large forces. Furthermore, we find that the stability of the confined rod is significantly enhanced by the presence of frictional contact and that in this case also the magnitude of the perturbation affects its response.

References

1.
Newman
,
K.
,
Kelleher
,
P. E.
, and
Smalley
,
Ed.
,
2014
, “
Extended Reach: Can We Reach Further?
SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition
, The Woodlands, TX, Mar. 25–26,
SPE
Paper No. 168235.
2.
Castro
,
L.
,
Craig
,
S.
,
Micheli
,
R.
, and
Livescu
,
S.
,
2015
, “
Overcoming Extended-Reach Challenges for Annular Fracturing
,”
SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition
, The Woodlands, TX, Mar. 24–25,
SPE
Paper No. 173683.
3.
Edillon
,
L.
,
2013
, “
Industry Trends Utilizing Larger Diameter Coiled Tubing for Extended Reach Operations in Northwestern Canada
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 30–Oct. 2,
SPE
Paper No. 166401.
4.
Paslay
,
P. R.
, and
Bogy
,
D. B.
,
1964
, “
The Stability of a Circular Rod Laterally Constrained to be in Contact With an Inclined Circular Cylinder
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
605
610
.
5.
van Adrichem
,
W.
, and
Newman
,
K.
,
1993
, “
Validation of Coiled-Tubing Penetration Prediction in Horizontal Wells
,”
J. Pet. Technol.
,
45
(
2
), pp.
155
159
.
6.
Kuru
,
E.
,
Martinez
,
A.
,
Miska
,
S.
, and
Qiu
,
W.
,
2000
, “
The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
129
135
.
7.
Dawson
,
R.
, and
Paslay
,
P. R.
,
1984
, “
Drill Pipe Buckling in Inclined Holes
,”
J. Pet. Technol.
,
36
(
10
), pp.
1734
1741
.
8.
Mitchell
,
R. F.
,
1982
, “
Buckling Behavior of Well Tubing: The Packer Effect
,”
Soc. Pet. Eng. J.
,
22
(
5
), pp.
616
624
.
9.
Chen
,
Y.-C.
,
Lin
,
Y.-H.
, and
Cheatham
,
J. B.
,
1990
, “
Tubing and Casing Buckling in Horizontal Wells
,”
J. Pet. Technol.
,
42
(
2
), pp.
140
141
.
10.
Wu
,
J.
, and
Juvkam-Wold
,
H. C.
,
1990
, “
Discussion of Tubing and Casing Buckling in Horizontal Wells
,”
J. Pet. Technol.
,
42
, pp.
1062
1063
.
11.
Denoël
,
V.
, and
Detournay
,
E.
,
2011
, “
Eulerian Formulation of Constrained Elastica
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
625
636
.
12.
Tan
,
X. C.
, and
Digby
,
P. J.
,
1993
, “
Buckling of Drill String Under the Action of Gravity and Axial Thrust
,”
Int. J. Solids Struct.
,
30
(
19
), pp.
2675
2691
.
13.
Fang
,
J.
,
Li
,
S. Y.
, and
Chen
,
J. S.
,
2013
, “
On a Compressed Spatial Elastica Constrained Inside a Tube
,”
Acta Mech.
,
224
(
11
), pp.
2635
2647
.
14.
Huang
,
N. C.
, and
Pattillo
,
P. D.
,
2000
, “
Helical Buckling of a Tube in an Inclined Wellbore
,”
Int. J. Nonlinear Mech.
,
35
(
5
), pp.
911
923
.
15.
Sun
,
C.
, and
Lukasiewicz
,
S.
,
2006
, “
A New Model on the Buckling of a Rod in Tubing
,”
J. Pet. Sci. Eng.
,
50
(
1
), pp.
78
82
.
16.
Van der Heijden
,
G. H. M.
,
Champneys
,
A. R.
, and
Thompson
,
J. M. T.
,
2002
, “
Spatially Complex Localisation in Twisted Elastic Rods Constrained to a Cylinder
,”
Int. J. Solids Struct.
,
39
(
7
), pp.
1863
1883
.
17.
Van der Heijden
,
G. H. M.
,
2001
, “
The Static Deformation of a Twisted Elastic Rod Constrained to Lie on a Cylinder
,”
Proc. R. Soc. A
,
457
(
2007
), pp.
695
715
.
18.
Wicks
,
N.
,
Wardle
,
B. L.
, and
Pafitis
,
D.
,
2008
, “
Horizontal Cylinder-in-Cylinder Buckling Under Compression and Torsion: Review and Application to Composite Drill Pipe
,”
Int. J. Mech. Sci.
,
50
(
3
), pp.
538
549
.
19.
Su
,
T.
,
Wicks
,
N.
,
Pabon
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Mechanism by Which a Frictionally Confined Rod Loses Stability Under Initial Velocity and Position Perturbations
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2468
2476
.
20.
Miller
,
J. T.
,
Su
,
T.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling of a Thin Rod Inside a Horizontal Cylindrical Constraint
,”
Extreme Mech. Lett.
,
3
, pp.
36
44
.
21.
McCourt
,
I.
, and
Kubie
,
J.
,
2005
, “
Limits on the Penetration of Coiled Tubing in Horizontal Oil Wells: Effect of the Pipe Geometry
,”
Proc. Inst. Mech. Eng., Part C.
,
219
(
11
), pp.
1191
1197
.
22.
Zheng
,
A.
, and
Sarmad
,
A.
,
2005
, “
The Penetration of Coiled Tubing With Residual Bend in Extended-Reach Wells
,”
SPE Annual Technical Conference and Exhibition
,
Dallas
,
TX
, Oct. 9–12,
SPE
Paper No. 95239, pp.
220
225
.
23.
Bhalla
,
K.
,
1995
, “
Coiled Tubing Extended Reach Technology
,”
Offshore Europe Conference
,
Aberdeen
,
UK
, Sept. 5–8,
SPE
Paper No. 30404, pp.
392
405
.
24.
Al Shehri
,
A.
,
Al-Driweesh
,
S.
,
Al Omari
,
M.
, and
Al Sarakbi
,
S.
,
2007
, “
Case History: Application of Coiled Tubing Tractor to Acid Stimulate Open Hole Extended Reach Power Water Injector Well
,”
SPE Asia Pacific Oil and Gas Conference
,
Jakarta
,
Indonesia
, Oct. 30–Nov. 1,
SPE
Paper No. 110382, pp.
989
996
.
25.
Al-Buali
,
M. H.
,
Dashash
,
A. A.
,
Shawly
,
A. S.
,
Al-Guraini
,
W. K.
,
Al-Driweesh
,
S. M.
,
Bugrov
,
V.
, and
Nicoll
,
S.
,
2009
, “
Maximizing Coiled Tubing Reach During Logging of Extended Horizontal Wells Using E-line Agitator
,”
Kuwait, International Petroleum Conference and Exhibition
,
Kuwait City
,
Kuwait
, Dec. 14–16,
SPE
Paper No. 127399, pp.
324
334
.
26.
Wicks
,
N.
,
Pabon
,
J.
, and
Zheng
,
A.
,
2014
, “
Modeling and Field Trials of the Effective Tractoring Force of Axial Vibration Tools
,” Galveston, TX, Sept. 10–11,
SPE
Paper No. 170327.
27.
McLachlan
,
N. W.
,
1951
,
Theory and Applications of Mathieu Functions
,
Oxford Press
,
London
.
28.
Markevich
,
N. I.
, and
Sel’kov
,
E. E.
,
1989
, “
Parametric Resonance and Amplification in Excitable Membranes. The Hodgkin–Huxley Model
,”
J. Theor. Biol.
,
140
(
1
), pp.
27
38
.
29.
Huseyin
,
K.
, and
Lin
,
R.
,
1991
, “
An Intrinsic Multiple-Time-Scale Harmonic Balance Method for Nonlinear Vibration and Bifurcation Problems
,”
Int. J. Nonlinear Mech.
,
26
(
5
), pp.
727
740
.
30.
Mettler
,
E.
,
2014
, “
Stability and Vibration Problems of Mechanical Systems Under Harmonic Excitation
,”
Dynamic Stability of Structures
, Pergamon Press, New York, pp.
169
188
.
31.
Stephenson
,
A.
,
1908
, “
On a New Type of Dynamic Stability
,”
Mem. Proc. Manchester Lit. Philos. Soc.
,
52
(
8
), pp.
1
10
.
32.
Stephenson
,
A.
,
1908
, “
On Induced Stability
,”
Philos. Mag.
,
15
(
86
), pp.
233
236
.
33.
Mathieu
,
E.
,
1868
, “
Mémoire sur le Mouvement Vibratoire d’une Membrane de Forme Elliptique
,”
J. Math. Pures Appl.
,
13
, pp.
137
203
.
34.
Arscott
,
F. M.
,
1964
,
Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions
,
The MacMillan Company
,
New York
.
35.
McLachlan
,
N. W.
,
1947
,
Theory and Application of Mathieu Functions
,
Clarendon Press
,
Oxford, UK
.
36.
Mitchell
,
J.
, “
Techniques for the Oscillated Pendulum and the Mathieu Equation
,” http://www.math.ou.edu/npetrov/joe-report.pdf
37.
Birdsall
,
C. K.
, and
Langdon
,
A. B.
,
1985
,
Plasma Physics Via Computer Simulations
,
McGraw-Hill, New York
.
38.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill Book, New York
.
39.
Pabon
,
J.
,
Wicks
,
N.
,
Chang
,
Y.
,
Dow
,
B.
, and
Harmer
,
R.
,
2009
, “
Modeling Transient Vibrations While Drilling Using a Finite Rigid Body Approach
,”
First International Colloquium on Nonlinear Dynamics of Deep Drilling Systems
, Galveston, TX, Oct. 5–6,
SPE
Paper No. 137754, pp.
83
87
.
40.
Budyans
,
R.
, and
Young
,
W.
,
2001
,
Roarkś Formulas for Stress & Strain
, 7th ed.,
McGraw-Hill, New York
.
41.
Antman
,
S. S.
,
1995
,
Nonlinear Problems of Elasticity
,
Springer, Berlin
.
42.
Coleman
,
B. D.
,
Dill
,
E. H.
,
Lembo
,
M.
,
Lu
,
Z.
, and
Tobias
,
I.
,
1993
, “
On the Dynamics of Rods in the Theory of Kirchhoff and Clebsch
,”
Arch. Rational Mech. Anal.
,
121
(
4
), pp.
339
359
.
43.
Hill
,
G. W.
,
1886
, “
On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon
,”
Acta. Math.
,
8
(
1
), pp.
1
36
.
44.
Lee
,
T. C.
,
1976
, “
A Study of Coupled Mathieu Equations by Use of Infinite Determinants
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
349
352
.
45.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
1998
, “
Transition Curves for the Quasi-Periodic Mathieu Equation
,”
SIAM J. Appl. Math.
,
58
(
4
), pp.
1094
1115
.
46.
Simakhina
,
S.
,
2003
, “
Stability Analysis of Hill’s Equation
,” Master thesis,
University of Illinois at Chicago
,
Chicago, IL
.
47.
Ruby
,
L.
,
1995
, “
Applications of the Mathieu Equation
,”
Am. J. Phys.
,
64
(
1
), pp.
39
44
.
You do not currently have access to this content.