As a size-dependent theory, flexoelectric effect is expected to be prominent at the small scale. In this paper, the band gap structure of elastic wave propagating in a periodically layered nanostructure is calculated by transfer matrix method when the effect of flexoelectricity is taken into account. Detailed calculations are performed for a BaTiO3-SrTiO3 two-layered periodic structure. It is shown that the effect of flexoelectricity can considerably flatten the dispersion curves, reduce the group velocities of the system, and decrease the midfrequency of the band gap. For periodic two-layered structures whose sublayers are of the same thickness, the width of the band gap can be decreased due to flexoelectric effect. It is also unveiled from our analysis that when the filling fraction is small, wider gaps at lower frequencies will be acquired compared with the results without considering flexoelectric effect. In addition, the band gap structures will approach the classical result as the total thickness of the unit cell increases. Our results indicate that the scaling law does not hold when the sizes of the periodic structures reach the nanoscale dimension. Therefore, the consideration of flexoelectric effect on the band structure of a nanosized periodic system is significant for precise manipulation of elastic wave propagation and its practical application.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martinez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, pp.
2022
2025
.10.1103/PhysRevLett.71.2022
2.
Olsson
III,
R. H.
, and
El-Kady
,
I.
,
2009
, “
Microfabricated Phononic Crystal Devices and Applications
,”
Meas. Sci. Tech.
,
20
, p.
012002
.10.1088/0957-0233/20/1/012002
3.
Gorishnyy
,
T.
,
Ullal
,
C. K.
,
Maldovan
,
M.
,
Fytas
,
G.
, and
Thomas
,
E. L.
,
2005
, “
Hypersonic Phononic Crystals
,”
Phys. Rev. Lett.
,
94
, p.
115501
.10.1103/PhysRevLett.94.115501
4.
Gomopoulos
,
N.
,
Maschke
,
D.
,
Koh
,
C. Y.
,
Thomas
,
E. L.
,
Tremel
,
W.
,
Butt
,
H. J.
, and
Fytas
,
G.
,
2010
, “
One-Dimensional Hypersonic Phononic Crystals
,”
Nano Lett.
,
10
, pp.
980
984
.10.1021/nl903959r
5.
Salasyuk
,
A. S.
,
Scherbakov
,
A. V.
,
Yakovlev
,
D. R.
,
Akimov
,
A. V.
,
Kaplyanskii
,
A. A.
,
Kaplan
,
S. F.
,
Grudinkin
,
S. A.
,
Nashchekin
,
A. V.
,
Pevtsov
,
A. B.
,
Golubev
,
V. G.
,
Berstermann
,
T.
,
Bruggemann
,
C.
,
Bombeck
,
M.
, and
Bayer
,
M.
,
2010
, “
Filtering of Elastic Waves by Opal-Based Hypersonic Crystal
,”
Nano Lett.
,
10
, pp.
1319
1323
.10.1021/nl904126m
6.
Schneider
,
D.
,
Liaqat
,
F.
,
El
Boudouti
,
E. H.
,
El Hassouani
,
Y.
,
Djafari-Rouhani
,
B.
,
Tremel
,
W.
,
Butt
,
H.
, and
Fytas
,
G.
,
2012
, “
Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks
,”
Nano Lett.
,
12
, pp.
3101
3108
.10.1021/nl300982d
7.
Eichenfield
,
M.
,
Chan
,
J.
,
Camacho
,
R. M.
,
Vahala
,
K. J.
, and
Painter
,
O.
,
2009
, “
Optomechanical Crystals
,”
Nature
,
462
, pp.
78
82
.10.1038/nature08524
8.
Yu
,
J. K.
,
Mitrovic
,
S.
,
Tham
,
D.
,
Varghese
,
J.
, and
Heath
,
J. R.
,
2010
, “
Reduction of Thermal Conductivity in Phononic Nanomesh Structures
,”
Nature Nanotech.
,
5
, pp.
718
721
.10.1038/nnano.2010.149
9.
Hopkins
,
P. E.
,
Reinke
,
C. M.
,
Su
,
M. F.
,
Olsson
III,
R. H.
,
Shaner
,
E. A.
,
Leseman
,
Z. C.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
El-Kady
,
I.
,
2011
, “
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
,”
Nano Lett.
,
11
, pp.
107
112
.10.1021/nl102918q
10.
Yang
,
L. N.
,
Yang
,
N.
, and
Li
,
B. W.
,
2013
, “
Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal
,”
Sci. Rep.
,
3
, p.
1143
.10.1038/srep01143
11.
Ramprasad
,
R.
, and
Shi
,
N.
,
2005
, “
Scalability of Phononic Crystal Heterostructures
,”
Appl. Phys. Lett.
,
87
, p.
111101
.10.1063/1.2043242
12.
Chen
,
A. L.
, and
Wang
,
Y. S.
,
2011
, “
Size-Effect on Band Structures of Nanoscale Phononic Crystals
,”
Physica E
,
44
, pp.
317
321
.10.1016/j.physe.2011.08.032
13.
Zhen
,
N.
,
Wang
,
Y. S.
, and
Zhang
,
C. Z.
,
2012
, “
Surface/Interface Effect on Band Structures of Nanosized Phononic Crystals
,”
Mech. Res. Commun.
,
46
, pp.
81
89
.10.1016/j.mechrescom.2012.09.002
14.
Liu
,
W.
,
Chen
,
J. W.
,
Liu
,
Y. Q.
, and
Su
,
X. Y.
,
2012
, “
Effect of Interface/Surface Stress on the Elastic Wave Band Structure of Two-Dimensional Phononic Crystals
,”
Phys. Lett. A
,
376
, pp.
605
609
.10.1016/j.physleta.2011.11.043
15.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Soviet Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
16.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
, p.
014110
.10.1103/PhysRevB.74.014110
17.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
, p.
121407
.10.1103/PhysRevB.78.121407
18.
Shen
,
S.
, and
Hu
,
S. L.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
, pp.
665
677
.10.1016/j.jmps.2010.03.001
19.
Liu
,
C. C.
,
Hu
,
S. L.
, and
Shen
,
S.
,
2012
, “
Effect of Flexoelectricity on Electrostatic Potential in a Bent Piezoelectric Nanowire
,”
Smart Mater. Struct.
,
21
, p.
115024
.10.1088/0964-1726/21/11/115024
20.
Xu
,
Y.
,
Hu
,
S. L.
, and
Shen
,
S.
,
2013
, “
Electrostatic Potential in a Bent Flexoelectric Semiconductive Nanowire
,”
CMES–Computer Modeling in Engineering & Sciences
,
91
(
5
), pp.
397
408
.10.3970/cmes.2013.091.397
21.
Liang
,
X.
, and
Shen
,
S.
,
2013
, “
Size-Dependent Piezoelectricity and Elasticity Due to the Electric Field-Strain Gradient Coupling and Strain Gradient Elasticity
,”
Int. J. Appl. Mech.
,
5
(
2
), p.
1350014
.10.1142/S1758825113500142
22.
Liang
,
X.
,
Hu
,
S. L.
, and
Shen
,
S.
,
2013
, “
Bernoulli–Euler Dielectric Beam Model Based on Strain-Gradient Effect
,”
ASME J. Appl. Mech.
,
80
, p.
044502
.10.1115/1.4023022
23.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta
,
568
, pp.
70
83
.10.1016/j.aca.2006.01.108
24.
Mohammadi
,
P.
,
Liu
,
L.
,
Sharma
,
P.
,
2014
, “
A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011007
.10.1115/1.4023978
25.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
P.
,
2013
, “
Flexoelectricity and Electrets in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
(in press).10.1016/j.jmps.2013.09.021
26.
Nguyen
,
Y. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.10.1002/adma.201203852
27.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Ann. Rev. Mater. Res.
, 2013,
43
, pp.
387
421
.10.1146/annurev-matsci-071312-121634
28.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
, p.
024304
.10.1063/1.3443404
29.
Lee
,
E. H.
, and
Yang
,
W. H.
,
1973
, “
On Waves in Composite Materials With Periodic Structure
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
492
499
.10.1137/0125049
30.
Sotiropoulos
,
D. A.
,
1993
, “
Transmission of Mechanical Waves Through Laminated Structures to Evaluate Interlamina Bonds
,”
Int. J. Mech. Sci.
,
35
, pp.
279
288
.10.1016/0020-7403(93)90082-6
31.
Camley
,
R. E.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Maradudin
,
A. A.
,
1983
, “
Transverse Elastic Waves in Periodically Layered Infinite and Semi-Infinite Media
,”
Phys. Rev. B
,
27
(
12
), pp.
7318
7329
.10.1103/PhysRevB.27.7318
32.
Kittel
,
C.
, and
McEuen
,
P.
,
1996
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
33.
Ma
,
W. H.
, and
Cross
,
L. E.
,
2006
, “
Flexoelectricity of Barium Titanate
,”
Appl. Phys. Lett.
,
88
, p.
232902
.10.1063/1.2211309
34.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P. R. L.
, and
Scott
,
J. F.
,
2007
, “
Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.10.1103/PhysRevLett.99.167601
35.
Maranganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics
,”
Phys. Rev. B
,
80
, p.
054109
.10.1103/PhysRevB.80.054109
You do not currently have access to this content.