An integrable Eulerian rate formulation of finite deformation elasticity is developed, which relates the Jaumann or other objective corotational rate of the Kirchhoff stress with material spin to the same rate of the left Cauchy–Green deformation measure through a deformation dependent constitutive tensor. The proposed constitutive relationship can be written in terms of the rate of deformation tensor in the form of a hypoelastic material model. Integrability conditions, under which the proposed formulation yields (a) a Cauchy elastic and (b) a Green elastic material model are derived for the isotropic case. These determine the deformation dependent instantaneous elasticity tensor of the material. In particular, when the Cauchy integrability criterion is applied to the stress-strain relationship of a hyperelastic material model, an Eulerian rate formulation of hyperelasticity is obtained. This formulation proves crucial for the Eulerian finite strain elastoplastic model developed in part II of this work. The proposed model is formulated and integrated in the fixed background and extends the notion of an integrable hypoelastic model to arbitrary corotational objective rates and coordinates. Integrability was previously shown for the grade-zero hypoelastic model with use of the logarithmic (D) rate, the spin of which is formulated in principal coordinates. Uniform deformation examples of rectilinear shear, closed path four-step loading, and cyclic elliptical loading are presented. Contrary to classical grade-zero hypoelasticity, no shear oscillation, elastic dissipation, or ratcheting under cyclic load is observed when the simple Zaremba–Jaumann rate of stress is employed.

References

1.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformations at Finite Strains
,”
J. Appl. Mech.
,
36
, pp.
1
6
.10.1115/1.3564580
2.
Nemat-Nasser
,
S.
,
1979
, “
Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
15
, pp.
155
166
.10.1016/0020-7683(79)90019-2
3.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2006
, “
Elastoplasticity Beyond Small Deformations
,”
Acta Mech.
,
182
, pp.
31
111
.10.1007/s00707-005-0282-7
4.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley
,
Chichester, England
.
5.
Truesdell
,
C.
,
1955
, “
The Simplest Rate Theory of Pure Elasticity
,”
Commun. Pure Appl. Math.
,
8
, pp.
123
132
.10.1002/cpa.3160080109
6.
Rivlin
,
R. S.
,
1955
, “
Further Remarks on the Stress Deformation Relations for Isotropic Materials
,”
J. Ration Mech. Anal.
,
4
, pp.
681
702
.
7.
Dienes
,
J. K.
,
1979
, “
On the Analysis of Rotation and Stress Rate in Deforming Bodies
,”
Acta Mech.
,
32
, pp.
217
232
.10.1007/BF01379008
8.
Nagtegaal
,
J. C.
, and
de Jong
,
J. E.
,
1981
, “
Some Aspects of Non-Isotropic Work-Hardening in Finite Strain Plasticity
,”
Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory
,
Experimental and Computation, Stanford University
,
Stanford, CA
, June 29–July 1, pp.
65
102
.
9.
Hill
,
R.
,
1978
, “
Aspects of Invariance in Solid Mechanics
,”
Adv. Appl. Mech.
,
18
, pp.
1
75
.10.1016/S0065-2156(08)70264-3
10.
Kojic
,
M.
, and
Bathe
,
K. J.
,
1987
, “
Studies of Finite Element Procedures— Stress Solution of a Closed Elastic Strain Path With Stretching and Shearing Using the Updated Lagrangian Jaumann Formulation
,”
Comput. Struct.
,
26
, pp.
175
179
.10.1016/0045-7949(87)90247-1
11.
Meyers
,
A.
,
Xiao
,
H.
, and
Bruhns
,
O. T.
,
2006
, “
Choice of Objective Rate in Single Parameter Hypoelastic Deformation Cycles
,”
Comput. Struct.
,
84
, pp.
1134
1140
.10.1016/j.compstruc.2006.01.012
12.
Truesdell
,
C.
, and
Noll
,
W.
,
2003
,
The Non-Linear Field Theories of Mechanics
, 3rd ed.,
Springer
,
Berlin
.
13.
Ericksen
,
J. L.
,
1958
, “
Hypo-Elastic Potentials
,”
Q. J. Mech. Appl. Math.
,
XI
, pp.
67
72
.10.1093/qjmam/11.1.67
14.
Bernstein
,
B.
,
1960
, “
Relations Between Hypo-Elasticity and Elasticity
,”
Trans. Soc. Rheol.
,
IV
, pp.
23
28
.10.1122/1.548874
15.
Oldroyd
,
J. G.
,
1950
, “
On the Formulation of Rheological Equations of State
,”
Proc. R. Soc., London, Ser. A,
200
, pp.
523
541
.10.1098/rspa.1950.0035
16.
Cotter
,
B. A.
, and
Rivlin
,
R. S.
,
1955
, “
Tensors Associated With Time-Dependent Stress
,”
Q. Appl. Math.
,
13
, pp.
177
182
.
17.
Dafalias
,
Y.
,
1983
, “
Corotational Rates for Kinematic Hardening at Large Plastic Deformations
,”
J. Appl. Mech.
,
50
, pp.
561
565
.10.1115/1.3167091
18.
Dubey
,
R. N.
,
1987
, “
Choice of Tensor Rates—A Methodology
,”
Solid Mech. Arch.
,
12
, pp.
233
244
.
19.
Simo
,
J. C.
, and
Pister
,
K. S.
,
1984
, “
Remarks on Rate Constitutive Equations for Finite Deformation Problems: Computational Implications
,”
Comput. Methods Appl. Mech. Eng.
,
46
, pp.
201
215
.10.1016/0045-7825(84)90062-8
20.
Lehmann
,
T.
,
Guo
,
Z. H.
, and
Liang
,
H. Y.
,
1991
, “
Conjugacy Between Cauchy Stress and Logarithm of the Left Stretch Tensor
,”
Eur. J. Mech., A/Solids
,
10
, pp.
395
404
.
21.
Reinhardt
,
W. D.
, and
Dubey
,
R. N.
,
1996
, “
Application of Objective Rates in Mechanical Modeling of Solids
,”
J. Appl. Mech.
,
118
, pp.
692
698
.10.1115/1.2823351
22.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Logarithmic Strain, Logarithmic Spin and Logarithmic Rate
,”
Acta Mech.
,
124
, pp.
89
105
.10.1007/BF01213020
23.
Hoger
,
A.
,
1986
, “
The Material Time Derivative of Logarithmic Strain Tensor
,”
Int. J. Solids Struct.
,
22
, pp.
1019
1032
.10.1016/0020-7683(86)90034-X
24.
Hoger
,
A.
,
1987
, “
The Stress Conjugate to Logarithmic Strain
,”
Int. J. Solids Struct.
,
23
, pp.
1645
1656
.10.1016/0020-7683(87)90115-6
25.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Hypo-Elasticity Model Based Upon the Logarithmic Stress Rate
,”
J. Elast.
,
47
, pp.
51
68
.10.1023/A:1007356925912
26.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2007
, “
The Integrability Criterion in Finite Elastoplasticity and its Constitutive Implications
,”
Acta Mech.
,
188
, pp.
227
244
.10.1007/s00707-006-0362-3
27.
Bruhns
,
O. T.
,
Xiao
,
H.
, and
Meyers
,
A.
,
1999
, “
Self-Consistent Eulerian Rate Type Elasto-Plasticity Models Based Upon the Logarithmic Stress Rate
,”
Int. J. Plast.
,
15
, pp.
479
520
.10.1016/S0749-6419(99)00003-0
28.
Simo
,
J. C.
, and
Ortiz
,
M. A.
,
1985
, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
49
, pp.
221
245
.10.1016/0045-7825(85)90061-1
29.
Simo
,
J. C.
,
1988
, “
A Framework for Finite Strain Elasto-Plasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
66
, pp.
199
219
.10.1016/0045-7825(88)90076-X
30.
Weber
,
G.
, and
Anand
,
L.
,
1990
, “
Finite Deformation Constitutive Equations and a Time Integration Procedure for Isotropic Hyperelastic-Viscoplastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
79
, pp.
173
202
.10.1016/0045-7825(90)90131-5
31.
Eterovic
,
A. L.
, and
Bathe
,
K. J.
,
1991
, “
A Note on the Use of the Additive Decomposition of the Strain Tensor in Finite Deformation Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
93
, pp.
31
38
.10.1016/0045-7825(91)90114-L
32.
Gabriel
,
G.
, and
Bathe
,
K. J.
,
1995
, “
Some Computational Issues in Large Strain Elastoplastic Analysis
,”
Comput. Struct.
,
56
, pp.
249
267
.10.1016/0045-7949(95)00019-D
33.
Lubarda
,
V. A.
,
1999
, “
Duality in Constitutive Formulation of Finite-Strain Elastoplasticity Based on F = FeFp and F = FpFe Decompositions
,”
Int. J. Plast.
,
15
, pp.
1277
1290
.10.1016/S0749-6419(99)00039-X
34.
Sansour
,
C.
, and
Wagner
,
W.
,
2003
, “
Viscoplasticity Based on Additive Decomposition of Logarithmic Strain and Unified Constitutive Equations, Theoretical and Computational Considerations With Reference to Shell Applications
,”
Comput. Struct.
,
81
, pp.
1583
1594
.10.1016/S0045-7949(03)00149-4
35.
Lubarda
,
V. A.
,
2004
, “
Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplasticity, and Biomechanics
,”
Appl. Mech. Rev.
,
57
, pp.
95
108
.10.1115/1.1591000
36.
Montans
,
F. J.
, and
Bathe
,
K. J.
,
2005
, “
Computational Issues in Large Strain Elasto-Plasticity: An Algorithm for Mixed Hardening and Plastic Spin
,”
Int. J. Numer. Methods Eng.
,
63
, pp.
159
196
.10.1002/nme.1270
37.
Sidoroff
,
F.
,
1973
, “
The Geometrical Concept of Intermediate Configuration and Elastic-Plastic Finite Strain
,”
Arch. Mech.
,
25
, pp.
299
308
.
38.
Lee
,
E. H.
,
1981
, “
Some Comments on Elastic-Plastic Analysis
,”
Int. J. Solids Struct.
,
17
, pp.
859
872
.10.1016/0020-7683(81)90101-3
39.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1999
, “
A Natural Generalization of Hypoelasticity and Eulerian Rate Type Formulation of Hyperelasticity
,”
J. Elast.
,
56
, pp.
59
93
.10.1023/A:1007677619913
40.
Spencer
,
A. J. M.
,
1984
,
Continuum Theory of the Mechanics of Fiber Reinforced Composites
,
Springer
,
New York
.
41.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.10.1023/A:1010835316564
42.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
Eulerian Structure of Generalized Plasticity: Theoretical and Computational Aspects
,”
ASCE J. Eng. Mech.
,
134
(
5
), pp.
354
361
.10.1061/(ASCE)0733-9399(2008)134:5(354)
43.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
On Large Deformation Generalized Plasticity
,”
J. Mech. Mater. Struct.
,
3
(
3
), pp.
441
457
.10.2140/jomms.2008.3.441
44.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1998
, “
On Objective Corotational Rates and Their Defining Spin Tensors
,”
Int. J. Solids Struct.
,
35
, pp.
4001
4014
.10.1016/S0020-7683(97)00267-9
45.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1998
, “
Strain Rates and Material Spins
,”
J. Elast.
,
52
, pp.
1
41
.10.1023/A:1007570827614
46.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of an Elastic-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
, pp.
251
281
.10.1007/BF00251666
47.
Scheidler
,
M.
,
1994
, “
The Tensor Equation AX+XA= ϕ(A,H) With Applications to Kinematics of Continua
,”
J. Elast.
,
36
, pp.
117
153
.10.1007/BF00040962
48.
Marsden
,
J.
, and
Hughes
,
T. J. R.
,
1994
,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
49.
Ogden
,
R. W.
,
1997
,
Nonlinear Elastic Deformations
,
Dover
,
New York
.
50.
Norris
,
A.
,
2008
, “
Eulerian Conjugate Stress and Strain
,”
J. Mech. Mater. Struct.
,
3
(
2
), pp.
243
260
.10.2140/jomms.2008.3.243
51.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
6
, pp.
582
592
.10.1063/1.1712836
52.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials I. Fundamental Concepts
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
, pp.
459
490
.10.1098/rsta.1948.0002
53.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
, pp.
3455
3482
.10.1016/S0020-7683(97)00217-5
54.
Blatz
,
R. J.
, and
Ko
,
W. L.
,
1962
, “
Application of Finite Elastic Theory to the Deformation of Rubbery Materials
,”
Trans. Soc. Rheol.
,
6
, pp.
223
251
.10.1122/1.548937
You do not currently have access to this content.