We study the short time transient stress and pore pressure fields near the tip of a stationary crack when a sudden load is applied to a poroelastic solid. These fields are determined using a small scale “yielding” (SSY) analysis where the stress relaxation due to fluid flow is confined to a small region near the crack tip. They are found to exhibit the usual inverse square root singularity characteristic of cracks in linear elastic solids. Analysis shows that these fields are self-similar; the region of stress relaxation that propagates outward from the crack tip is proportional to Dct, where Dc is the cooperative diffusion coefficient and t is time. The pore pressure at the crack tip vanishes immediately after loading. The stress intensity factor at the crack tip is found to be reduced by a factor of 1/[2(1-v)], where v is the Poisson's ratio of the drained solid. Closed form approximations are found for the pore pressure and the trace of the effective stress. These approximate analytical solutions compare well with finite element results.

References

1.
Riedel
,
H.
, and
Rice
,
J. R.
,
1980
, “
Tensile Cracks in Creeping Solids
”,
ASTM STP 700
, American Society for Testing and Materials, Philadelphia, pp.
112
130
.
2.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
,
New York.
3.
Galli
,
M.
,
Fornasiere
,
E.
,
Cugnoni
,
J.
, and
Oyen
,
M. L.
,
2011
, “
Poroviscoelastic Characterization of Particle-Reinforced Gelatin Gels Using Indentation and Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
4
, pp.
610
617
.10.1016/j.jmbbm.2011.01.009
4.
Hu
,
Y.
,
Zhao
,
X.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Using Indentation to Characterize the Poroelasticity of Gels
,”
Appl. Phys. Lett.
,
96
, pp.
121904
121906
.10.1063/1.3370354
5.
Hui
,
C. Y.
,
Lin
,
Y. Y.
,
Chuang
,
F. C.
,
Shull
,
K. R.
, and
Lin
,
W. C.
,
2006
, “
A Contact Mechanics Method for Characterizing the Elastic Properties and Permeability of Gels
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
, pp.
359
370
.10.1002/polb.20613
6.
Lin
,
Y. Y.
, and
Hu
,
B. W.
,
2006
, “
Load Relaxation of a Flat Rigid Circular Indenter on a Gel Half Space
,”
J. Non-Cryst. Solids
,
352
, pp.
4034
4040
.10.1016/j.jnoncrysol.2006.07.007
7.
Scherer
,
G. W.
,
1989
, “
Drying Gels VIII. Revision and Review
,”
J. Non-Cryst. Solids
,
109
, pp.
171
182
.10.1016/0022-3093(89)90029-X
8.
Scherer
,
G. W.
,
1992
, “
Crack-Tip Stress in Gels
,”
J. Non-Cryst. Solids
,
144
, pp.
210
216
.10.1016/S0022-3093(05)80402-8
9.
Ruina
,
A.
,
1978
, “
Influence of Coupled Deformation-Diffusion Effects On the Retardation of Hydraulic Fracture
,” M.Sc. thesis, Brown University, Providence, RI.
10.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Solvent Control of Crack Dynamics in a Reversible Hydrogel
,”
Nature Mater.
,
5
, pp.
552
555
.10.1038/nmat1666
11.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Fracture of a Biopolymer Gel as a Viscoplastic Disentanglement Process
,”
Eur. Phys. J. E
,
21
, pp.
81
89
.10.1140/epje/i2006-10048-6
12.
Seitz
,
M. E.
,
Martina
,
D.
,
Baumberger
,
T.
,
Krishnan
,
V. R.
,
Hui
,
C. Y.
, and
Shull
,
K. R.
,
2009
, “
Fracture and Large Strain Behavior of Self-Assembled Triblock Copolymer Gels
,”
Soft Matter
,
5
, pp.
447
456
.10.1039/b810041a
13.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.10.1063/1.1712886
14.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys. Space Phys.
,
14
, pp.
227
241
.10.1029/RG014i002p00227
15.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
, pp.
182
185
.10.1063/1.1721956
16.
Knowles
,
J. K.
, and
Sternberg
,
E.
,
1973
, “
An Asymptotic Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack
,”
J. Elast.
,
3
, pp.
67
107
.10.1007/BF00045816
17.
Stephenson
,
R.
,
1982
, “
The Equilibrium Field Near the Tip of a Crack for Finite Plane Strain of Incompressible Elastic Materials
,”
J. Elast.
,
12
, pp.
65
99
.10.1007/BF00043706
18.
Krishnan
,
V. R.
,
Hui
,
C. Y.
, and
Long
,
R.
,
2008
, “
Finite Strain Crack Tip Fields in Soft Incompressible Elastic Solids
,”
Langmuir
,
24
, pp.
14245
14253
.10.1021/la802795e
You do not currently have access to this content.