Based on the finite element method, the numerical solution of the shallow-water equation for one-dimensional (1D) unsteady flows was established. To respect the stability criteria, the time step of the method was dependent on the space step and flow velocity. This method was used to avoid the restriction due to the wave celerity variation in the computational analysis when using the method of characteristics. Furthermore, boundary conditions are deduced directly from the scheme without using characteristics equations. For the numerical solution, a general-purpose computer program, based on the finite element method (FEM), is coded in fortran to analyze the dynamic response of the open channel flow. This program is able to handle rectangular, triangular, or trapezoidal sections. Some examples solved with the finite element method are reported herein. The first involves routing a discharge hydrograph down a rectangular channel. The second example consists of routing a sudden shutoff of all flow at the downstream end of a rectangular channel. The third one deals with routing a discharge hydrograph down a trapezoidal channel. These examples are taken from the quoted literature text book. Numerical results agree well with those obtained by these authors and show that the proposed method is consistent, accurate, and highly stable in capturing discontinuities propagation in free surface flows.

References

1.
Yost
,
S. A.
, and
Rao
,
P.
,
2000
, “
A Moving Boundary Approach for One-Dimensional Free Surface Flows
,”
Adv. Water Resour.
,
23
, pp.
373
382
.10.1016/S0309-1708(99)00029-9
2.
Rao
P.
,
2005
, “
Numerical Modelling of Open Channel Flows Using a Multiple Grid ENO Scheme
,”
Appl. Math. Comput. Sci. Direct
,
161
, pp.
599
610
.10.1016/j.amc.2003.12.051
3.
Liang
,
D.
,
Falconer Ingram
,
R. A.
, and
Lin
,
B.
,
2000
, “
Comparison Between TVD-McCormack and ADI-Type Solvers of the Shallow Water Equation
,”
Adv. Water Resour.
,
23
, pp.
545
562
.10.1016/S0309-1708(99)00036-6
4.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1967
,
Hydraulic Transients
,
McGraw-Hill
,
New York
.
5.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in System
,
Prentice Hall
,
Englewood Cliffs, NJ
.
6.
Chanson
,
H.
,
2009
, “
Application of the Method of Characteristics to the Dam Break Wave Problem
,”
J. Hydraul. Res.
,
47
(
1
), pp.
41
49
.10.3826/jhr.2009.2865
7.
Mohammadian
,
A.
,
Le Roux
,
D. Y.
, and
Tajrishi
,
M.
,
2007
, “
A Conservative Extension of the Method of Characteristics for 1-D Shallow Flows
,”
Appl. Math. Model.
,
31
,
332
348
.10.1016/j.apm.2005.11.018
8.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.10.1016/0021-9991(81)90128-5
9.
Toro
,
E. F.
,
2000
,
Shock Capturing Methods for Free Surface Shallow Flows
,
John Wiley
,
New York
.
10.
Fennema
,
R. J.
, and
Chaudhry
,
M. H.
,
1987
, “
Simulation of One-Dimensional Dam-Break Flows
,”
J. Hydraul. Res.
,
25
(
1
), pp.
41
51
.10.1080/00221688709499287
11.
Hicks
,
E. F.
, and
Steffer
,
P. M.
,
1992
, “
Characteristics Dissipative Galerkin Scheme for Open Channel Flow
,”
J. Hydraul. Eng.
,
118
(
2
), pp.
337
352
.10.1061/(ASCE)0733-9429(1992)118:2(337)
12.
Szymkiewicz
,
R.
,
1991
,
Finite-Element Method for the Solution of the Saint-Venant Equations in an Open Channel Network
,”
J. Hydrol.
,
122
, pp.
275
287
.10.1016/0022-1694(91)90182-H
13.
Masud
,
A.
, and
Khurram
,
R.
,
2004
, “
A Multiscale/Stabilized Finite Element Method for the Advection-Diffusion Equation
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
1997
2018
.10.1016/j.cma.2003.12.047
14.
Masud
,
A.
, and
Calderer
,
R.
,
2009
, “
A Variational Multiscale Stabilized Formulation for the Incompressible Navier–Stokes Equations
,”
Comput. Mech.
,
44
, pp.
145
160
.10.1007/s00466-008-0362-3
15.
Calderer
,
R.
, and
Masud
,
A.
,
2010
, “
A Multiscale Stabilized ALE Formulation for Incompressible Flows With Moving Boundaries
,”
Comput. Mech.
,
46
, pp.
185
197
.10.1007/s00466-010-0487-z
16.
Buchanan
,
G. R.
,
2004
,
Finite Element Analysis
,
Tata McGraw-Hill
,
New Delhi
.
17.
Dhatt
,
G.
, and
Touzot
,
G.
,
1984
,
Une Présentation de la Méthode des Eléments Finis
, Edition
Maloine SA
,
Paris
.
18.
Richtmeyer
,
R. D.
, and
Morton
,
K. W.
,
1967
,
Difference Methods for Initial Value Problems
,
Intersciences
,
New York
.
You do not currently have access to this content.