A computational model developed based on the phase-field approach is used to model domain structures in ferroelectric thin films and to quantify the effects of strain and applied electric field on the microstructural evolution, and on the induced dielectric, electrostrictive, and piezoelectric film properties. Theoretically predicted vortex-like polydomain and experimentally observed bidomain and monodomain film morphologies are modeled using the continuum phase-field approach. A nonlinear finite element method is used to solve the boundary value problems relevant to ferroelectric thin films. The computed results agree with the Kittel law for specific ranges of film strain. Simulations that track the domain structure evolution and compute ferroelectric thin film properties given the film dimensions and the imposed electromechanical boundary conditions are also reported.

1.
Su
,
Y.
, and
Landis
,
C. M.
, 2007, “
Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
280
305
.
2.
Kontsos
,
A.
, and
Landis
,
C. M.
, 2009, “
Computational Modeling of Domain Wall Interactions With Dislocations in Ferroelectric Crystals
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
1491
1498
.
3.
Cao
,
W.
, and
Cross
,
W.
, 1991, “
Theory of Tetragonal Twin Structures in Ferroelectric Perovskites With a First-Order Phase Transition
,”
Phys. Rev. B
0163-1829,
44
(
1
), pp.
5
12
.
4.
Duan
,
W.
, and
Liu
,
Z. -R.
, 2006, “
Theoretical Modeling and Simulations of Perovskite Ferroelectrics: From Phenomenological Approaches to Ab Initio
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
10
, pp.
40
51
.
5.
Scott
,
J. F.
, and
Dawber
,
M.
, 2000, “
Oxygen-Vacancy Ordering as a Fatigue Mechanism in Perovskite Ferroelectrics
,”
Appl. Phys. Lett.
0003-6951,
76
(
25
), pp.
3801
3803
.
6.
Scott
,
J. F.
, 2007, “
Applications of Modern Ferroelectrics
,”
Science
0036-8075,
315
, pp.
954
959
.
7.
Landau
,
L. A. L. E.
, 1935, “
On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies
,”
Phys. Z. Sowjetunion
0369-9811,
8
(
153
), pp.
101
108
.
8.
Kittel
,
C.
, 1946, “
Theory of the Structure of Ferromagnetic Domains in Films and Small Particles
,”
Phys. Rev.
0096-8250,
70
(
11-12
), pp.
965
971
.
9.
Mitsui
,
T.
, and
Furuichi
,
J.
, 1953, “
Domain Structure of Rochelle Salt and KH2PO4
,”
Phys. Rev.
0096-8250,
90
(
2
), pp.
193
202
.
10.
Catalan
,
G.
,
Scott
,
J. F.
,
Schilling
,
A.
, and
Gregg
,
J. M.
, 2007, “
Wall Thickness Dependence of the Scaling Law for Ferroic Stripe Domains
,”
J. Phys.: Condens. Matter
0953-8984,
19
, p.
022201
.
11.
Streiffer
,
S. K.
,
Eastman
,
J. A.
,
Fong
,
D. D.
,
Thompson
,
C.
,
Munkholm
,
A.
,
Ramana Murty
,
M. V.
,
Auciello
,
O.
,
Bai
,
G. R.
, and
Stephenson
,
G. B.
, 2002, “
Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO3 Thin Films
,”
Phys. Rev. Lett.
0031-9007,
89
(
6
), p.
067601
.
12.
Takahashi
,
R.
,
Dahl
,
O.
,
Eberg
,
E.
,
Grepstad
,
J. K.
, and
Tybell
,
T.
, 2008, “
Ferroelectric Stripe Domains in PbTiO3 Thin Films: Depolarization Field and Domain Randomness
,”
J. Appl. Phys.
0021-8979,
104
, p.
064109
.
13.
Thompson
,
C.
,
Fong
,
D. D.
,
Wang
,
R. V.
,
Jiang
,
F.
,
Streiffer
,
S. K.
,
Latifi
,
K.
,
Eastman
,
J. A.
,
Fuoss
,
P. H.
, and
Stephenson
,
G. B.
, 2008, “
Imaging and Alignment of Nanoscale 180° Stripe Domains in Ferroelectric Thin Films
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
182901
.
14.
Schilling
,
A.
,
Adams
,
T. B.
,
Bowman
,
R. M.
,
Gregg
,
J. M.
,
Catalan
,
G.
, and
Scott
,
J. F.
, 2006, “
Scaling of Domain Periodicity With Thickness Measured in BaTiO3 Single Crystal Lamellae and Comparison With Other Ferroics
,”
Phys. Rev. B
0163-1829,
74
, p.
024115
.
15.
Fu
,
H.
, and
Bellaiche
,
L.
, 2003, “
Ferroelectricity in Barium Titanate Quantum Dots and Wires
,”
Phys. Rev. Lett.
0031-9007,
91
(
25
), p.
257601
.
16.
Wu
,
Z.
,
Huang
,
N.
,
Liu
,
Z.
,
Wu
,
J.
,
Wenhui
,
D.
, and
Gu
,
B. -L.
, 2004, “
Ferroelectricity in Pb(Zr0.5Ti0.5)O3 Thin Films: Critical Thickness and 180° Stripe Domains
,”
Phys. Rev. B
0163-1829,
70
, p.
104108
.
17.
Lai
,
B. -K.
,
Ponomareva
,
I.
,
Naumov
,
I. I.
,
Kornev
,
I.
,
Fu
,
H.
,
Bellaiche
,
L.
, and
Salamo
,
G. J.
, 2006, “
Electric-Field Induced Domain Evolution in Ferroelectric Ultrathin Films
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
137602
.
18.
Lai
,
B. -K.
,
Ponomareva
,
I.
,
Kornev
,
I.
,
Bellaiche
,
L.
, and
Salamo
,
G. J.
, 2007, “
Domain Evolution of BaTiO3 Ultrathin Films Under an Electric Field: A First-Principles Study
,”
Phys. Rev. B
0163-1829,
75
, p.
085412
.
19.
Lai
,
B. -K.
,
Ponomareva
,
I.
,
Kornev
,
I.
,
Bellaiche
,
L.
, and
Salamo
,
G. J.
, 2007, “
Thickness Dependency of 180 Stripe Domains in Ferroelectric Ultrathin Films: A First-Principles-Based Study
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
152909
.
20.
Chen
,
L. Q.
, 2002, “
Phase-Field Modeling for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
1531-7331,
32
, pp.
113
140
.
21.
Brennan
,
C.
, 1995, “
Landau Theory of Thin Ferroelectric Films
,”
Integr. Ferroelectr.
1058-4587,
9
, pp.
335
346
.
22.
Li
,
Y. L.
,
Hu
,
S. Y.
,
Liu
,
Z. K.
, and
Chen
,
L. Q.
, 2001, “
Phase-Field Model of Domain Structures in Ferroelectric Thin Films
,”
Appl. Phys. Lett.
0003-6951,
78
(
24
), pp.
3878
3880
.
23.
Schrade
,
D.
,
Mueller
,
R.
,
Xu
,
B. X.
, and
Cross
,
D.
, 2007, “
Domain Evolution in Ferroelectric Materials: A Continuum Phase Field Model and Finite Element Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
4365
4374
.
24.
Dayal
,
K.
, and
Bhattacharya
,
K.
, 2007, “
A Real Space Non-Local Phase-Field Model of Ferroelectric Domain Patterns in Complex Geometries
,”
Acta Mater.
1359-6454,
55
, pp.
1907
1917
.
25.
Li
,
W.
, and
Landis
,
C. M.
, 2008, “
Phase-Field Modeling of Domain Switching Near Crack Tips in Single Crystal Ferroelectrics
,”
Proc. SPIE
0277-786X,
6929
, p.
J9290
.
26.
Gurtin
,
M. E.
, 1996, “
Generalized Ginzburg-Landau and Cahn-Hilliard Equations Based on a Microforce Balance
,”
Physica D
0167-2789,
92
, pp.
178
192
.
27.
Scott
,
J. F.
, 2006, “
Nanoferroelectrics: Statics and Dynamics
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
R361
R386
.
You do not currently have access to this content.