In this paper, a complete elastodynamic solution for axisymmetric problems under axial body-forces in terms of two retarded potential functions in transversely isotropic media is extended to the case of general torsionless axisymmetry. Allowing for both axial and radial distributed internal loads through the use of an extra potential, the new solution retains its completeness via the theory of repeated wave equations. By virtue of its analytical design, the formulation can be reduced to the corresponding elastostatic case by simply suppressing the time-dependence of its potentials as well as the case of isotropy. In the limiting case of the latter material condition, the proposed representation for elastostatic problem degenerates to a recent extension of Love’s potential function.

1.
Elliott
,
H. A.
, 1948, “
Three Dimensional Stress Distribution in Hexagonal Aeolotropic Crystals
,”
Proc. Cambridge Philos. Soc.
0068-6735,
44
, pp.
522
533
.
2.
Eubanks
,
R. A.
, and
Sternberg
,
E.
, 1954, “
On the Axisymmetric Problem of Elasticity Theory for a Medium With Transverse Isotropy
,”
J. Rat. Mech. Anal.
,
3
, pp.
89
101
.
3.
Hu
,
H. C.
, 1953, “
On the Three Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body
,”
Sci. Sin.
0582-236X,
2
, pp.
145
151
.
4.
Lekhnitskii
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Body
,
Mir
,
Moscow
.
5.
Michell
,
J. H.
, 1900, “
The Stress in an Aeolotropic Elastic Solid With an Infinite Plane Boundary
,”
Proc. London Math. Soc.
0024-6115,
XXXII
, pp.
247
258
.
6.
Nowacki
,
W.
, 1954, “
The Stress Function in Three Dimensional Problems Concerning an Elastic Body Characterized by Transversely Isotropy
,”
Bull. Acad. Pol. Sci. [Biol]
,
2
, pp.
21
25
.
7.
Wang
,
M. Z.
, and
Wang
,
W.
, 1995, “
Completeness and Nonuniqueness of General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
0020-7683,
32
(
3/4
), pp.
501
513
.
8.
Lodge
,
A. S.
, 1955, “
The Transformation to Isotropic Form of the Equilibrium Equations for a Class of Anisotropic Elastic Solids
,”
Q. J. Mech. Appl. Math.
0033-5614,
8
(
2
), pp.
211
225
.
9.
Sternberg
,
E.
, and
Eubanks
,
R. A.
, 1957, “
On Stress Functions for Elastokinetics and the Integration of the Repeated Wave Equation
,”
Q. Appl. Math.
0033-569X,
15
, pp.
149
153
.
10.
Sternberg
,
E.
, 1960, “
On the Integration of the Equation of Motion in the Classical Theory of Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
6
, pp.
34
50
.
11.
Sternberg
,
E.
, and
Gurtin
,
M. E.
, 1962, “
On the Completeness of Certain Stress Functions in the Linear Theory of Elasticity
,”
Proceedings of the Fourth U.S. National Congress on Applied Mechanics
, pp.
793
797
.
12.
Gurtin
,
M. E.
, 1972, “
The Linear Theory of Elasticity
,”
Handbuch der Physik
(
Mechanics of Solids II
Vol. Via/
2
),
S.
Flügge
and
C.
Truesdell
, eds.,
Springer
,
Berlin
, pp.
1
295
.
13.
Stippes
,
M.
, 1969, “
Completeness of Papkovich Potentials
,”
Q. Appl. Math.
0033-569X,
26
, pp.
477
483
.
14.
Truesdell
,
C.
, 1959, “
Invariant and Complete Stress Functions for General Continua
,”
Arch. Ration. Mech. Anal.
0003-9527,
4
, pp.
1
29
.
15.
Eskandari-Ghadi
,
M.
, and
Pak
,
R. Y. S.
, 2008, “
Elastodynamics and Elastostatics by a Unified Method of Potentials for x3 Convex Domains
,”
J. Elast.
0374-3535,
92
(
2
), pp.
187
194
.
16.
Eskandari-Ghadi
,
M.
, 2005, “
A Complete Solution of the Wave Equations for Transversely Isotropic Media
,”
J. Elast.
0374-3535,
81
, pp.
1
19
.
17.
Simmonds
,
J. G.
, 2000, “
Love’s Stress Function for Torsionless Axisymmetric Deformation of Elastically Isotropic Bodies With Body Forces
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
628
629
.
18.
Kellogg
,
O. D.
, 1953,
Foundation of Potential Theory
,
Dover
,
New York
.
19.
Phillips
,
H. B.
, 1933,
Vector Analysis
,
Wiley
,
New York
.
20.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
You do not currently have access to this content.