By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.

1.
Erdogan
,
F.
,
Wu
,
B. H.
, 1996, “
Crack Problems in FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
0149-5739,
19
(
3
), pp.
237
265
.
2.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer
,
Dordrecht
.
3.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
, 2003, “
Failure of Functionally Graded Materials
,”
Comprehensive Structural Integrity
, Vol.
2
,
Elsevier Science
,
Amsterdam
, pp.
607
644
.
4.
Yildirim
,
B.
, and
Erdogan
,
F.
, 2004, “
Edge Crack Problems in Homogenous and Functionally Graded Material Thermal Barrier Coatings Under Uniform Thermal Loading
,”
J. Therm. Stresses
0149-5739,
27
(
4
), pp.
311
329
.
5.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2004, “
Micromechanics-Based Elastic Modeling for Functionally Graded Materials With Particle Interactions
,”
Acta Mater.
1359-6454,
52
, pp.
3535
3543
.
6.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2005, “
Effective Thermal Conductivity of Functionally Graded Particulate Composites
,”
J. Appl. Phys.
0021-8979,
98
, p.
063704
.
7.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2007, “
Micromechanics-Based Thermoelastic Model for Functionally Graded Particulate Materials With Particle Interactions
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
132
160
.
8.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2008, “
Heat Flux Field for One Spherical Inhomogeneity Embedded in a Functionally Graded Material Matrix
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
11-12
), pp.
3018
3024
.
9.
Pompea
,
W.
,
Worch
,
H.
,
Epple
,
M.
,
Friess
,
W.
,
Gelinsky
,
M.
,
Greil
,
P.
,
Hempele
,
U.
,
Scharnweber
,
D.
, and
Schulte
,
K.
, 2003, “
Functionally Graded Materials for Biomedical Applications
,”
Mater. Sci. Eng., A
0921-5093,
362
, pp.
40
60
.
10.
Songa
,
H. S.
,
Hyuna
,
S. H.
,
Moona
,
J.
, and
Song
,
R. H.
, 2005, “
Electrochemical and Microstructural Characterization of Polymeric Resin-Derived Multilayered Composite Cathode for SOFC
,”
J. Power Sources
0378-7753,
145
, pp.
272
277
.
11.
Zhang
,
Q. J.
,
Tang
,
X. F.
,
Zhai
,
P. C.
,
Niino
,
M.
, and
Endo
,
C.
, 2005, “
Recent Development in Nano and Graded Thermoelectric Materials
,”
Mater. Sci. Forum
0255-5476,
492–493
, pp.
135
140
.
12.
Kapitza
,
P. L.
, 1941, “
The Study of Heat Transfer in Helium II
,”
J. Phys. (USSR)
0368-3400,
4
, pp.
181
210
.
13.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal-Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
14.
Every
,
A. G.
,
Tzou
,
Y.
,
Hasselman
,
D. P. H.
, and
Raj
,
R.
, 1992, “
The Effect of Particle Size on the Thermal Conductivity of ZnS/diamond Composites
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
123
129
.
15.
Yang
,
H.-S.
,
Bai
,
G.-R.
,
Thompson
,
L. J.
, and
Eastman
,
J. A.
, 2002, “
Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia
,”
Acta Mater.
1359-6454,
50
, pp.
2309
2317
.
16.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
17.
Benveniste
,
Y.
, 1987, “
Effective Thermal Conductivity of Composites With a Thermal Contact Resistance Between the Constituents: Nondilute Case
,”
J. Appl. Phys.
0021-8979,
61
, pp.
2840
2843
.
18.
Hasselman
,
D. P. H.
and
Johnson
,
L. F.
, 1987, “
Effective Thermal-Conductivity of Composites With Interfacial Thermal Barrier Resistance
,”
J. Compos. Mater.
0021-9983,
21
, pp.
508
515
.
19.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6692
6699
.
20.
Duong
,
H. M.
,
Papavassiliou
,
D. V.
,
Lee
,
L. L.
, and
Mullen
,
K. J.
, 2005, “
Random Walks in Nanotube Composites: Improved Algorithms and the Role of Thermal Boundary Resistance
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
013101
.
21.
Budiansky
,
B.
, 1965, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
223
227
.
22.
Hill
,
R.
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
13
,
213
222
.
23.
Reiter
,
T.
, and
Dvorak
,
G. J.
, 1998, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1655
1673
.
24.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
25.
Eshelby
,
J. D.
, 1959, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
252
, pp.
561
569
.
26.
Hatta
,
H.
, and
Taya
,
M.
, 1986, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
0020-7225,
24
(
7
), pp.
1159
1172
.
You do not currently have access to this content.