By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.
1.
Erdogan
, F.
, Wu
, B. H.
, 1996, “Crack Problems in FGM Layers Under Thermal Stresses
,” J. Therm. Stresses
0149-5739, 19
(3
), pp. 237
–265
.2.
Miyamoto
, Y.
, Kaysser
, W. A.
, Rabin
, B. H.
, Kawasaki
, A.
, and Ford
, R. G.
, 1999, Functionally Graded Materials: Design, Processing and Applications
, Kluwer
, Dordrecht
.3.
Paulino
, G. H.
, Jin
, Z. H.
, and Dodds
, R. H.
, 2003, “Failure of Functionally Graded Materials
,” Comprehensive Structural Integrity
, Vol. 2
, Elsevier Science
, Amsterdam
, pp. 607
–644
.4.
Yildirim
, B.
, and Erdogan
, F.
, 2004, “Edge Crack Problems in Homogenous and Functionally Graded Material Thermal Barrier Coatings Under Uniform Thermal Loading
,” J. Therm. Stresses
0149-5739, 27
(4
), pp. 311
–329
.5.
Yin
, H. M.
, Sun
, L. Z.
, and Paulino
, G. H.
, 2004, “Micromechanics-Based Elastic Modeling for Functionally Graded Materials With Particle Interactions
,” Acta Mater.
1359-6454, 52
, pp. 3535
–3543
.6.
Yin
, H. M.
, Paulino
, G. H.
, Buttlar
, W. G.
, and Sun
, L. Z.
, 2005, “Effective Thermal Conductivity of Functionally Graded Particulate Composites
,” J. Appl. Phys.
0021-8979, 98
, p. 063704
.7.
Yin
, H. M.
, Paulino
, G. H.
, Buttlar
, W. G.
, and Sun
, L. Z.
, 2007, “Micromechanics-Based Thermoelastic Model for Functionally Graded Particulate Materials With Particle Interactions
,” J. Mech. Phys. Solids
0022-5096, 55
, pp. 132
–160
.8.
Yin
, H. M.
, Paulino
, G. H.
, Buttlar
, W. G.
, and Sun
, L. Z.
, 2008, “Heat Flux Field for One Spherical Inhomogeneity Embedded in a Functionally Graded Material Matrix
,” Int. J. Heat Mass Transfer
0017-9310, 51
(11-12
), pp. 3018
–3024
.9.
Pompea
, W.
, Worch
, H.
, Epple
, M.
, Friess
, W.
, Gelinsky
, M.
, Greil
, P.
, Hempele
, U.
, Scharnweber
, D.
, and Schulte
, K.
, 2003, “Functionally Graded Materials for Biomedical Applications
,” Mater. Sci. Eng., A
0921-5093, 362
, pp. 40
–60
.10.
Songa
, H. S.
, Hyuna
, S. H.
, Moona
, J.
, and Song
, R. H.
, 2005, “Electrochemical and Microstructural Characterization of Polymeric Resin-Derived Multilayered Composite Cathode for SOFC
,” J. Power Sources
0378-7753, 145
, pp. 272
–277
.11.
Zhang
, Q. J.
, Tang
, X. F.
, Zhai
, P. C.
, Niino
, M.
, and Endo
, C.
, 2005, “Recent Development in Nano and Graded Thermoelectric Materials
,” Mater. Sci. Forum
0255-5476, 492–493
, pp. 135
–140
.12.
Kapitza
, P. L.
, 1941, “The Study of Heat Transfer in Helium II
,” J. Phys. (USSR)
0368-3400, 4
, pp. 181
–210
.13.
Swartz
, E. T.
, and Pohl
, R. O.
, 1989, “Thermal-Boundary Resistance
,” Rev. Mod. Phys.
0034-6861, 61
, pp. 605
–668
.14.
Every
, A. G.
, Tzou
, Y.
, Hasselman
, D. P. H.
, and Raj
, R.
, 1992, “The Effect of Particle Size on the Thermal Conductivity of ZnS/diamond Composites
,” Acta Metall. Mater.
0956-7151, 40
, pp. 123
–129
.15.
Yang
, H.-S.
, Bai
, G.-R.
, Thompson
, L. J.
, and Eastman
, J. A.
, 2002, “Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia
,” Acta Mater.
1359-6454, 50
, pp. 2309
–2317
.16.
Cahill
, D. G.
, Ford
, W. K.
, Goodson
, K. E.
, Mahan
, G. D.
, Majumdar
, A.
, Maris
, H. J.
, Merlin
, R.
, and Phillpot
, S. R.
, 2003, “Nanoscale Thermal Transport
,” J. Appl. Phys.
0021-8979, 93
, pp. 793
–818
.17.
Benveniste
, Y.
, 1987, “Effective Thermal Conductivity of Composites With a Thermal Contact Resistance Between the Constituents: Nondilute Case
,” J. Appl. Phys.
0021-8979, 61
, pp. 2840
–2843
.18.
Hasselman
, D. P. H.
and Johnson
, L. F.
, 1987, “Effective Thermal-Conductivity of Composites With Interfacial Thermal Barrier Resistance
,” J. Compos. Mater.
0021-9983, 21
, pp. 508
–515
.19.
Nan
, C. W.
, Birringer
, R.
, Clarke
, D. R.
, and Gleiter
, H.
, 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,” J. Appl. Phys.
0021-8979, 81
, pp. 6692
–6699
.20.
Duong
, H. M.
, Papavassiliou
, D. V.
, Lee
, L. L.
, and Mullen
, K. J.
, 2005, “Random Walks in Nanotube Composites: Improved Algorithms and the Role of Thermal Boundary Resistance
,” Appl. Phys. Lett.
0003-6951, 87
, p. 013101
.21.
Budiansky
, B.
, 1965, “On the Elastic Moduli of Some Heterogeneous Materials
,” J. Mech. Phys. Solids
0022-5096, 13
, pp. 223
–227
.22.
Hill
, R.
, 1965, “A Self-Consistent Mechanics of Composite Materials
,” J. Mech. Phys. Solids
0022-5096, 13
, 213
–222
.23.
Reiter
, T.
, and Dvorak
, G. J.
, 1998, “Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,” J. Mech. Phys. Solids
0022-5096, 46
, pp. 1655
–1673
.24.
Eshelby
, J. D.
, 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
1364-5021, 241
, pp. 376
–396
.25.
Eshelby
, J. D.
, 1959, “The Elastic Field Outside an Ellipsoidal Inclusion
,” Proc. R. Soc. London, Ser. A
1364-5021, 252
, pp. 561
–569
.26.
Hatta
, H.
, and Taya
, M.
, 1986, “Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,” Int. J. Eng. Sci.
0020-7225, 24
(7
), pp. 1159
–1172
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.