A heuristic approach is presented to solve continuum topology optimization problems with specified constraints, e.g., structural volume constraint and/or displacement constraint(s). The essentials of the present approach are summarized as follows. First, the structure is regarded as a piece of bone and the topology optimization process is viewed as bone remodeling process. Second, a second-rank positive and definite fabric tensor is introduced to express the microstructure and anisotropy of a material point in the design domain. The eigenpairs of the fabric tensor are the design variables of the material point. Third, Wolff’s law, which states that bone microstructure and local stiffness tend to align with the stress principal directions to adapt to its mechanical environment, is used to renew the eigenvectors of the fabric tensor. To update the eigenvalues, an interval of reference strain, which is similar to the concept of dead zone in bone remodeling theory, is suggested. The idea is that, when any one of the absolute values of the principal strains of a material point is out of the current reference interval, the fabric tensor will be changed. On the contrary, if all of the absolute values of the principal strains are in the current reference interval, the fabric tensor remains constant and the material point is in a state of remodeling equilibrium. Finally, the update rule of the reference strain interval is established. When the length of the interval equals zero, the strain energy density in the final structure distributes uniformly. Simultaneously, the volume and the displacement field of the final structure are determined uniquely. Therefore, the update of the reference interval depends on the ratio(s) between the current constraint value(s) and their critical value(s). Parameters, e.g., finite element mesh the initial material and the increments of the eigenvalues of fabric tensors, are studied to reveal their influences on the convergent behavior. Numerical results demonstrate the validity of the method developed.

1.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
331
390
.
2.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
3.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
202
.
4.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
, 1992, “
Generalized Shape Optimization Without Homogenizaiton
,”
Struct. Optim.
0934-4373,
4
, pp.
250
252
.
5.
Atrek
,
E.
, and
Kodali
,
R.
, 1989, “
Optimum Design of Continuum Structures With SHAPE
,”
CAD/CAM Robotics and Factories of the Future
, Vol.
2
,
B.
Prasad
, ed.,
Springer
,
Berlin
.
6.
Xie
,
Y. M.
, and
Steven
,
G. P.
, 1993, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
0045-7949,
49
, pp.
885
896
.
7.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
, 1998, “
Evolutionary Structural Optimization (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
0264-4401,
15
, pp.
1031
1048
.
8.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
, 1994, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
0934-4373,
8
, pp.
42
51
.
9.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
227
246
.
10.
Sigmund
,
O.
, and
Torquato
,
S.
, 1997, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1037
1067
.
11.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1999, “
Material Interpolation Schemes in Topology Optimization
,”
Appl. Mech. Rev.
0003-6900,
69
, pp.
635
654
.
12.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Method and Applications
,
Springer
,
Berlin
.
13.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsøe
,
M. P.
, 2002, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
1
10
.
14.
Pauwels
,
F.
, 1965,
Gesammelte Abhandlungen zur Funktionellen Anatomic des Bewegungsapparates
,
Springer-Verlag
,
Berlin
.
15.
Carter
,
D. T.
,
Harris
,
W. H.
,
Vasu
,
R.
, and
Caler
,
W. E.
, 1981, “
The Mechanical and Biological Response of Cortical Bone to In Vivo Strain Histories
,”
Mechanical Properties of Bone
,
S. C.
Cowin
, ed.,
ASME
,
New York
.
16.
Cowin
,
S. C.
, 1986, “
Wolff’S Law of Trabecular Architecture at Remodeling Equilibrium
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
83
88
.
17.
Frost
,
H. M.
, 1987, “
Bone “Mass” and the “Mechanostat:” A Proposal
,”
Anat. Rec.
0003-276X,
219
, pp.
1
9
.
18.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
, 1987, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
0021-9290,
20
, pp.
1135
1150
.
19.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
, 1994, “
A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process
,”
J. Biomech.
0021-9290,
27
, pp.
1389
1394
.
20.
Huiskes
,
R.
,
Ruimerman
,
R.
,
van Lenthe
,
G. H.
, and
Janssen
,
J. D.
, 2000, “
Effects of Mechanical Forces on Maintenance and Adaptation on Form in Trabecular Bone
,”
Nature (London)
0028-0836,
405
, pp.
704
706
.
21.
Wolff
,
J.
, 1986,
The Law of Bone Remodelling (Das Gesetz der Transformation der Knochen, Hirschwald, 1892)
, translated by P. Maquet and R. Furlong,
Springer
,
Berlin
.
22.
Gibson
,
L. J.
, 1985, “
The Mechanical Behaviour of Cancellous Bone
,”
J. Biomech.
0021-9290,
18
, pp.
317
328
.
23.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
, 1997, “
Fabric and Elastic Principal Directions of Cancellous Bone Are Closely Related
,”
J. Biomech.
0021-9290,
30
, pp.
487
495
.
24.
Cai
,
K.
,
Zhang
,
H. W.
, and
Chen
,
B. S.
, 2006, “
Wolff’S Law Based Topology Optimization for Continuum Structure
,”
Acta Mech. Sin.
0459-1879,
38
, pp.
514
521
, in Chinese.
25.
Cai
,
K.
,
Chen
,
B. S.
, and
Zhang
,
H. W.
, 2007, “
Topology Optimization of Continuum Structures Based on a New Bionics Method
,”
Int. J. Comput. Meth. Eng. Sci. Mech.
,
8
, pp.
233
242
.
26.
Whitehouse
,
W. J.
, and
Dyson
,
E. D.
, 1974, “
Scanning Electron Microscope Studies of Trabecular Bone in the Proximal End of the Human Femur
,”
J. Anat.
0021-8782,
118
, pp.
417
444
.
27.
Harrigan
,
T. P.
, and
Mann
,
R. W.
, 1984, “
Characterization of Microstructural Anisotropy in Othotropic Materials Using a Second Rank Tensor
,”
J. Mater. Sci.
0022-2461,
19
, pp.
761
767
.
28.
Cowin
,
S. C.
, 1985, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
0167-6636,
4
, pp.
137
147
.
29.
Kanatani
,
K.
, 1984, “
Distribution of Directional Data and Fabric Tensors
,”
Int. J. Eng. Sci.
0020-7225,
22
, pp.
149
164
.
30.
Boehler
,
J. P.
, 1987,
Applications of Tensor Functions in Solid Mechanics
,
Springer
,
Wien
.
31.
Zysset
,
P. K.
, and
Curnier
,
A.
, 1995, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
0167-6636,
21
, pp.
243
250
.
32.
He
,
Q. C.
, and
Curnier
,
A.
, 1995, “
A More Fundamental Approach to Damaged Elastic Stress-Strain Relations
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1433
1457
.
You do not currently have access to this content.