A micromechanics approach for assessing the impact of an interfacial thermal resistance, also known as the Kapitza resistance, on the effective thermal conductivity of carbon nanotube-polymer nanocomposites is applied, which includes both the effects of the presence of the hollow region of the carbon nanotube (CNT) and the effects of the interactions amongst the various orientations of CNTs in a random distribution. The interfacial thermal resistance is a nanoscale effect introduced in the form of an interphase layer between the CNT and the polymer matrix in a nanoscale composite cylinder representative volume element to account for the thermal resistance in the radial direction along the length of the nanotube. The end effects of the interfacial thermal resistance are accounted for in a similar manner through the use of an interphase layer between the polymer and the CNT ends. Resulting micromechanics predictions for the effective thermal conductivity of polymer nanocomposites with randomly oriented CNTs, which incorporate input from molecular dynamics for the interfacial thermal resistance, demonstrate the importance of including the hollow region in addition to the interfacial thermal resistance, and compare well with experimental data.

1.
Yakobson
,
B.
, and
Avouris
,
P.
, 2001, “
Mechanical Properties of Carbon Nanotubes
,”
Top. Appl. Phys.
0303-4216,
80
, pp.
287
327
.
2.
Demczyk
,
B.
,
Wang
,
Y.
,
Cumings
,
J.
,
Hetman
,
M.
,
Han
,
W.
,
Zettl
,
A.
, and
Ritchie
,
R.
, 2002, “
Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes
,”
Mater. Sci. Eng., A
0921-5093,
334
, pp.
173
178
.
3.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
(
4
), pp.
R2514
-
R2516
.
4.
Ebbesen
,
T.
,
Lezec
,
H.
,
Hiura
,
H.
,
Bennett
,
J.
,
Ghaemi
,
H.
, and
Thio
,
T.
, 1996, “
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
382
, pp.
54
56
.
5.
Allaoui
,
A.
,
Bai
,
S.
,
Cheng
,
H.
, and
Bai
,
J.
, 2002, “
Mechanical and Electrical Properties of a Mwnt/Epoxy Composite
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1993
1998
.
6.
Potschke
,
P.
,
Bhattacharyya
,
A.
, and
Janke
,
A.
, 2004, “
Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their use in Blends With Polyethylene
,”
Carbon
0008-6223,
42
, pp.
965
969
.
7.
Meincke
,
O.
,
Kaempfer
,
D.
,
Weickmann
,
H.
,
Friedrich
,
C.
,
Vathauer
,
M.
, and
Warth
,
H.
, 2004, “
Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and its Blends With Acrylonitrile/Butadiene/Styrene
,”
Polymer
0032-3861,
45
, pp.
739
748
.
8.
McNally
,
T.
,
Potschke
,
P.
,
Halley
,
P.
,
Murphy
,
M.
,
Martin
,
D.
,
Bell
,
S.
,
Brennan
,
G.
,
Bein
,
D.
,
Lemoine
,
P.
, and
Quinn
,
J.
, 2005, “
Polyethylene Multiwalled Carbon Nanotube Composites
,”
Polymer
0032-3861,
46
, pp.
8222
8232
.
9.
Gojny
,
F.
,
Wichmann
,
M.
,
Fiedler
,
B.
,
Kinloch
,
I.
,
Bauhofer
,
W.
,
Windle
,
A.
, and
Schulte
,
K.
, 2006, “
Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,”
Polymer
0032-3861,
47
, pp.
2036
2045
.
10.
Hu
,
G.
,
Zhao
,
C.
,
Zhang
,
S.
,
Yang
,
M.
, and
Wang
,
Z.
, 2006, “
Low Percolation Thresholds of Electrical Conductivity and Rheology in Poly(Ethylene Terephthalate) Through the Networks of Multi-Walled Carbon Nanotubes
,”
Polymer
0032-3861,
47
, pp.
480
488
.
11.
Song
,
Y.
, and
Youn
,
J.
, 2006, “
Evaluation of Effective Thermal Conductivity for Carbon Nanotube/Polymer Composites Using Control Volume Finite Element Method
,”
Carbon
0008-6223,
44
, pp.
710
717
.
12.
Bryning
,
M.
,
Milkie
,
D.
,
Islam
,
M.
,
Kikkawa
,
J.
, and
Yodh
,
A.
, 2005, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
161909
.
13.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Fischer
,
J.
, and
Winey
,
K.
, 2005, “
Thermal Conductivity of Single-Walled Carbon Nanotube/Pmma Nanocomposites
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
858E
, p.
hH3.31.1
.
14.
Du
,
F.
,
Guthy
,
C.
,
Kashiwagi
,
T.
,
Fischer
,
J.
, and
Winey
,
K.
, 2006, “
An Infiltration Method for Preparing Single-Wall Nanotube/Epoxy Composites With Improved Thermal Conductivity
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
1513
1519
6.
15.
Xu
,
Y.
,
Ray
,
G.
, and
Abdel-Magid
,
B.
, 2006, “
Thermal Behavior of Single-Walled Carbon Nanotube Polymer-Matrix Composites, Part A
,”
Composites, Part A
1359-835X,
37
, pp.
114
121
6.
16.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
17.
Chen
,
T.
,
Weng
,
G.
, and
Liu
,
W.-C.
, 2005, “
Effect of Kapitza Contact and Consideration of Tube-End Transport on the Effective Conductivity in Nanotube-Based Composites
,”
J. Appl. Phys.
0021-8979,
97
, p.
104312
.
18.
Nan
,
C.-W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
0009-2614,
375
, pp.
666
669
3.
19.
Huxtable
,
S.
,
Cahill
,
D.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
, pp.
731
734
.
20.
Clancy
,
T.
, and
Gates
,
T.
, 2006, “
Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites
,”
Polymer
0032-3861,
47
, pp.
5990
5996
.
21.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
(
10
), pp.
6692
6699
.
22.
Shenogin
,
S.
,
Bodapati
,
A.
,
Xue
,
L.
,
Ozisik
,
R.
, and
Keblinski
,
P.
, 2004, “
Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
12
), pp.
2229
2231
.
23.
Yang
,
R.
,
Chen
,
G.
, and
Dresselhaus
,
M.
, 2005, “
Thermal Conductivity of Simple and Tubular Nanowire Composites in the Longitudinal Direction
,”
Phys. Rev. B
0163-1829,
72
, p.
125418
.
24.
Hung
,
M.-T.
,
Choi
,
O.
,
Ju
,
Y.
, and
Hahn
,
H.
, 2006, “
Heat Conduction in Graphite-Nanoplatelet-Reinforced Polymer Nanocomposites
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
023117
.
25.
Choi
,
S.
,
Zhang
,
Z.
,
Yu
,
W.
,
Lockwood
,
F.
, and
Grulke
,
E.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
26.
Benveniste
,
Y.
, and
Miloh
,
T.
, 1986, “
The Effective Conductivity of Composites With Imperfect Thermal Contact at Constituent Interfaces
,”
Int. J. Eng. Sci.
0020-7225,
24
(
9
), pp.
1537
1552
.
27.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
28.
Hatta
,
H.
, and
Taya
,
M.
, 1985, “
Effective Thermal Conductivity of a Misoriented Short Fiber Composite
,”
J. Appl. Phys.
0021-8979,
58
(
7
), pp.
2478
2486
.
29.
Hatta
,
H.
, and
Taya
,
M.
, 1986, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
0020-7225,
24
(
7
), pp.
1159
1172
.
30.
Hashin
,
Z.
, 1968, “
Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites
,”
J. Compos. Mater.
0021-9983,
2
(
3
), pp.
284
300
.
31.
Hashin
,
Z.
, 1990, “
Thermoelastic Properties and Conductivity of Carbon/Carbon Fiber Composites
,”
Mech. Mater.
0167-6636,
8
, pp.
293
308
.
32.
Marzari
,
N.
, and
Ferrari
,
M.
, 1992, “
Textural and Micromorphological Effects on the Overall Elastic Response of Macroscopically Anisotropic Composites
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
269
275
.
33.
Entchev
,
P.
,
Lagoudas
,
D.
, 2002, “
Modeling Porous Shape Memory Alloys Using Micromechanical Averaging Techniques
,”
Mech. Mater.
0167-6636,
34
, pp.
1
24
.
34.
Odegard
,
G.
,
Gates
,
T.
,
Wise
,
K.
,
Park
,
C.
, and
Siochi
,
E.
, 2003, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1671
1687
.
35.
Eshelby
,
J.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London
0962-8452,
241
(
1226
), pp.
376
396
.
36.
Christensen
,
R. M.
, 1979,
Mechanics of Composite Materials
,
Krieger
,
Malabar, FL
.
37.
Levy
,
O.
, and
Stroud
,
D.
, 1997, “
Maxwell Garnett Theory for Mixtures of Anisotropic Inclusions: Application to Conducting Polymers
,”
Phys. Rev. B
0163-1829,
56
(
13
), pp.
8035
8046
.
38.
Yu
,
M.-F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
0031-9007,
84
(
24
), pp.
5552
5555
.
39.
Ruoff
,
R. S.
,
Lorents
, and
D. C.
, 1995, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
0008-6223,
33
, pp.
925
930
.
40.
Qian
,
D.
,
Liu
,
W. K.
,
Ruoff
, and
R. S.
, 2003, “
Load Transfer Mechanisms in Carbon Nanotube Ropes
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1561
1569
.
41.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Maloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multi-Walled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
(
28
), pp.
637
640
.
42.
Hill
,
R.
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
213
222
.
You do not currently have access to this content.