Mathematical models of pressure transients accompanied with cavitation and gas bubbles are studied in this paper to describe the flow behavior in a hydraulic pipeline. The reasonable prediction for pressure transients in a low pressure hydraulic pipeline largely depends on several unknown parameters involved in the mathematical models, including the initial gas bubble volumes in hydraulic oils, gas releasing and resolving time constants. In order to identify the parameters in the mathematical models and to shorten the computation time of the identification, a new method—parallel genetic algorithm (PGA)—is applied in this paper. Based on the least-square errors between the experimental data and simulation results, the fitness function of parallel genetic algorithms is programed and implemented. The global optimal parameters for hydraulic pipeline pressure transient models are obtained. The computation time of parallel genetic algorithms is much shorter than that of serial genetic algorithms. By using PGAs, the executing time is 20h. However, it takes about 204h by using GAs. Simulation results with identified parameters obtained by parallel genetic algorithms agree well with the experimental data. The comparison between simulation results and the experimental data indicates that parallel genetic algorithms are feasible and efficient to estimate the unknown parameters in hydraulic pipeline transient models accompanied with cavitation and gas bubbles.

1.
Shu
,
J. J.
,
Burrows
,
C. R.
, and
Edge
,
K. A.
, 1997, “
Pressure Pulsation in Reciprocating Pump Piping Systems Part 1: Modeling
,”
Proc. Inst. Mech. Eng., Part I.
,
211
, pp.
229
237
.
2.
Shu
,
J. J.
, 2003, “
Modeling Vaporous Cavitation on Fluid Transients
,”
Int. J. Pressure Vessels Piping
0308-0161,
80
, pp.
187
195
.
3.
Bergant
,
A.
, and
Simpson
,
R. S.
, 1999, “
Pipeline Column Separation Flow Regimes
,”
J. Hydraul. Eng.
0733-9429,
125
(
11
), pp.
835
848
.
4.
Bergant
,
A.
,
Simpson
,
A.
, and
Tijsseling
,
A.
, 2006, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
0889-9746,
22
, pp.
135
171
.
5.
Li
,
S. J.
,
Edge
,
K. A.
, and
Bao
,
W.
, 2005, “
Simulation of Hydraulic Pipeline Pressure Transients Using Matlab Simulink
,” in
Proceedings of the Sixth International Conference on Fluid Power Transmission and Control (ISFP’2005)
,
Hangzhou, China
, pp.
468
471
.
6.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L. S.
, 1993,
Fluid Transients in Systems
,
Prentice-Hall
,
Englewood Cliffs, N.J.
7.
Zielke
,
W.
,
Perko
,
H. D.
, and
Keller
,
A.
, 1989, “
Gas Release in Transient Pipe Flow
,” in
Proceedings of the Sixth International Conference on Pressure Surges
,
BHRA
,
Cambridge, UK
, pp.
3
13
.
8.
Holland
,
J. H.
, 1992,
Adaptation in Natural and Artificial Systems
,
MIT
,
Cambridge, MA
.
9.
Solar
,
M.
,
Parada
,
V.
, and
Urrutia
,
R.
, 2002, “
A. Parallel Genetic Algorithm to Solve the Set-Covering Problem
,”
Comput. Oper. Res.
0305-0548,
29
(
9
), pp.
1221
1235
.
10.
Alba
,
E.
, and
Troya
,
J. M.
, 2001, “
Analyzing Synchronous and Asynchronous Parallel Distributed Genetic Algorithms
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
17
(
4
), pp.
451
465
.
11.
James
,
T. L.
,
Barkhi
,
R.
, and
Johnson
,
J. D.
, 2006, “
Platform Impact on Performance of Parallel Genetic Algorithms: Design and Implementation Considerations
,”
Eng. Applic. Artif. Intell.
0952-1976,
19
(
8
), pp.
843
856
.
12.
Kirley
,
M.
, and
Li
,
X. D.
, 2002, “
The Effects of Varying Population Density in a Fine-Grained Parallel Genetic Algorithm
,” in
Proceedings of the 2002 IEEE Congress on Evolutionary Computation
,
Honolulu, HI
, Vol.
2
, pp.
1709
1714
.
13.
Li
,
Y. M.
, and
Cho
,
Y. Y.
, 2006, “
Parallel Genetic Algorithm for SPICE Model Parameter Extraction
,” in
20th IEEE International Parallel and Distributed Processing Symposium
,
Rhodes Island, Greece
, Paper No. IPDPS1639609.
14.
Sena
,
G. A.
,
Megherbi
,
D.
, and
Isern
,
G.
, 2001, “
Implementation of a Parallel Genetic Algorithm on a Cluster of Workstations: Traveling Salesman Problem, A Case Study
,”
Adv. Perform. Mater
0929-1881,
17
(
4
), pp.
477
488
.
15.
Kagawa
,
T.
,
Lee
,
I. Y.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
, 1983, “
High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristic Method
,”
Trans. JSME, Ser. B.
,
49
(
447
), pp.
2638
2644
.
16.
Lee
,
I. Y.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
, 1985, “
On the Transient Behaviour of Oil Flow Under Negative Pressure
,”
Bull. JSME
0021-3764,
28
(
240
), pp.
1097
1104
.
17.
Wiggert
,
D. C.
, and
Sundquist
,
M. J.
, 1979, “
The Effect of Gaseous Cavitation on Fluid Transients
,”
J. Fluids Eng.
0098-2202,
101
, pp.
79
86
.
18.
Schweitzer
,
P. H.
, and
Szebehely
,
V. G.
, 1950, “
Gas Evolution in Liquids and Cavitation
,”
J. Appl. Phys.
0021-8979,
21
(
12
), pp.
1218
1224
.
You do not currently have access to this content.