A system of periodic elastic strips (each one considered as a piece of a plate) is characterized by a matrix relation between the Bloch series of displacement and traction at the bottom side of the system. Both these mechanical fields are involved in the boundary conditions at the contact plane between the strips and the substrate supporting a Rayleigh wave. The analysis exploits the mechanical field expansion over the plate modes, including complex modes; numerical results satisfy the energy conservation law satisfactorily. The derived planar harmonic Green’s function provides an alternative tool for investigation of surface waves propagation under periodic elastic strips, with respect to pure numerical methods mostly applied in the surface acoustic wave devices literature. Perfect agreement of the presented theory with the experimentally verified perturbation model of thin strips is demonstrated.

1.
Danicki
,
E.
, 1992, “
Generation and Bragg Reflection of Surface Acoustic Waves in Nearly Periodic System of Elastic Metal Strips on Piezoelectric Half-Space
,”
J. Acoust. Soc. Am.
0001-4966,
93
, pp.
116
131
.
2.
Danicki
,
E.
, 1984, “
Perturbation Theory of Surface Acoustic Wave Reflection from a Periodic Structure With Arbitrary Angle of Incidence
,”
Arch. Mech.
0373-2029,
36
, pp.
623
638
.
3.
Biriukov
,
S. V.
,
Martin
,
G.
, and
Polevoi
,
V. G.
, 1995, “
Derivation of COM Equations Using the Surface Impedance Method
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
UFFC-42
, pp.
602
611
.
4.
Danicki
,
E. J.
, 1998, “
An Approximation to the Planar Harmonic Green’s Function at Branch Points in Wave-Number Domain
,”
J. Acoust. Soc. Am.
0001-4966,
104
, pp.
651
663
.
5.
Besserer
,
H.
, and
Malishevsky
,
P. S.
, 2004, “
Mode Series Expansions at Vertical Boundaries in Elastic Waveguides
,”
Wave Motion
0165-2125,
39
, pp.
41
59
.
6.
Karunasena
,
W.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
, 1995, “
Reflection of Plate Waves at Fixed Edge of a Composite Plate
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
644
651
.
7.
Torvik
,
P. J.
, 1971, “
The Elastic Strip With Prescribed End Displacements
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
929
936
.
8.
Torvik
,
P. J.
, 1967, “
Reflection of Wave Trains in Semi-Infinite Plates
,”
J. Acoust. Soc. Am.
0001-4966,
41
, pp.
346
353
.
9.
Gregory
,
R. D.
, and
Gladwel
,
I.
, 1983, “
The Reflection of a Symmetric Rayleigh-Lamb Wave at the Fixed or Free Edge of a Plate
,”
J. Elast.
0374-3535,
13
, pp.
185
206
.
10.
Gregory
,
R. D.
, and
Gladwell
,
I.
, 1982, “
The Cantilever Beam Under Tension, Bending Or Flexure at Infinity
,”
J. Elast.
0374-3535,
12
, pp.
317
343
.
11.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
, 1979, “
On the Stress Singularities in the Plane Elasticity of the Composite Wedge
,”
J. Elast.
0374-3535,
9
, pp.
373
391
.
12.
Williams
,
M. I.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
19
, pp.
526
528
.
13.
Bogy
,
D. B.
, 1971, “
Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles Under Surface Traction
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
377
386
.
14.
Gregory
,
R. D.
, 1979, “
Green’s Function, Bi-Linear Forms, and Completeness of the Eigenfunctions for the Elastostatic Strip and Wedge
,”
J. Elast.
0374-3535,
9
, pp.
283
309
.
15.
Danicki
,
E. J.
,
Hickernell
,
F. S.
, and
Mateescu
,
I.
, 2005, “
Closed-Form Solution for SPUDTS
,”
IEEE Freq. Contr. Symp. Proc.
,
1
, pp.
152
155
.
16.
Danicki
,
E. J.
, 2003, “
Surface Acoustic Wave Diffraction in Spectral Theory of Interdigital Transducers
,”
J. Acoust. Soc. Am.
0001-4966,
114
, pp.
813
820
.
17.
Pagneux
,
V.
, 2006, “
Revisiting the Edge Resonance for Lamb Waves in a Semi-Infinite Plate
,”
J. Acoust. Soc. Am.
0001-4966,
120
, pp.
647
-
656
.
18.
Danicki
,
E. J.
, 1999, “
Resonant Phenomena in Bulk-Wave Scattering by In-Plane Periodic Cracks
,”
J. Acoust. Soc. Am.
0001-4966,
105
, pp.
84
-
92
.
19.
Kundu
,
T.
,
Banerjee
,
S.
, and
Jata
,
K. V.
, 2006, “
An Experimental Investigation of Guided Vawe Propagation in Corrugated Plates Showing Stop Bands and Pass Bands
,”
J. Acoust. Soc. Am.
0001-4966,
120
, pp.
1217
1226
.
20.
Quarry
,
M. J.
, and
Rose
,
J. L.
, 1997, “
Multimode Guided Wave Inspection of Piping Using Comb Transducers
,”
Mater. Eval.
0025-5327,
45
, pp.
504
508
.
21.
Danicki
,
E. J.
, 2002, “
Scattering by Periodic Cracks and the Theory of Comb Transducers
,”
Wave Motion
0165-2125,
35
, pp.
355
370
.
22.
Danicki
,
E. J.
, 2007, “
Spectral Theory of Interdigital Transducers
,” http://www.ippt.gov.pl/~edanicki/danickibook.pdfhttp://www.ippt.gov.pl/~edanicki/danickibook.pdf.
You do not currently have access to this content.