We consider the dynamical response of a finite, simply supported Timoshenko beam loaded by a force moving with a constant velocity. The classical solution for the transverse displacement and the rotation of the cross section of a Timoshenko beam has a form of a sum of two infinite series, one of which represents the force vibrations (aperiodic vibrations) and the other one free vibrations of the beam. We show that one of the series, which represents aperiodic (force) vibrations of the beam, can be presented in a closed form. The closed form solutions take different forms depending if the velocity of the moving force is smaller or larger than the velocities of certain shear and bar velocities.

1.
Fryba
,
L.
, 1999,
Vibration of Solids and Structures Under Moving Loads
,
Telford
,
London
.
2.
Tung
,
C. C.
, 1969, “
Response of Highway Bridges to Renewal Traffic Loads
,”
J. Engrg. Mech. Div.
0044-7951,
95
, pp.
41
57
.
3.
Sieniawska
,
R.
, and
Śniady
,
P.
, 1990, “
First Passage Problem of the Beam Under a Random Stream of Moving Forces
,”
J. Sound Vib.
0022-460X,
136
, pp.
177
185
.
4.
Achenbach
,
J. D.
, and
Sun
,
C. T.
, 1965, “
Moving Load on a Flexibly Supported Timoshenko Beam
,”
Int. J. Solids Struct.
0020-7683,
1
(
4
), pp.
353
370
.
5.
Florence
,
A. L.
, 1965, “
Travelling Force on a Timoshenko Beam
,”
ASME J. Appl. Mech.
0021-8936,
32
(
2
), pp.
351
358
.
6.
Steel
,
C. R.
, 1968, “
The Timoshenko Beam With a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
35
(
3
), pp.
481
488
.
7.
Tang
,
S. C.
, 1966, “
Travelling Force on a Timoshenko Beam
,”
ASME J. Appl. Mech.
0021-8936,
33
(
1
), pp.
233
234
.
8.
Bogacz
,
R.
,
Nowakowski
,
S.
, and
Popp
,
K.
, 1986, “
On the Stability of a Timoshenko Beam on an Elastic Foundation Under a Moving Spring-Mass System
,”
Acta Mech.
0001-5970,
61
, pp.
117
127
.
9.
Katz
,
R.
,
Lee
,
C. W.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
, 1988, “
The Dynamic Response of a Rotating Shaft Subject to a Moving Load
,”
J. Sound Vib.
0022-460X,
122
(
1
), pp.
131
148
.
10.
Zu
,
J. W.-Z.
, and
Han
,
R. P.S.
, 1994, “
Dynamic Response of a Spinning Timoshenko Beam With General Boundary Conditions and Subjected to a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
152
160
.
11.
Lee
,
H. P.
, 1995, “
Dynamic Response of a Rotating Timoshenko Shaft Subject to Axial Forces and Moving Loads
,”
J. Sound Vib.
0022-460X,
181
(
1
), pp.
169
177
.
12.
Felszeghy
,
S. F.
, 1996a, “
The Timoshenko Beam on an Elastic Foundation and Subject to a Moving Step Load. 1: Steady-State Response
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
277
284
.
13.
Felszeghy
,
S. F.
, 1996b, “
The Timoshenko Beam on an Elastic Foundation and Subject to a Moving Step Load. 2: Transient Response
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
285
291
.
14.
Wang
,
R.-T.
, 1997, “
Vibration of Multi-Span Timoshenko Beams to a Moving Force
,”
J. Sound Vib.
0022-460X,
207
(
5
), pp.
731
742
.
15.
Chen
,
Y. H.
,
Huang
,
Y. H.
, and
Shih
,
C. T.
, 2001, “
Infinite Timoshenko Beam on Viscoelastic Foundation to Harmonic Moving Load
,”
J. Sound Vib.
0022-460X,
241
(
5
), pp.
809
824
.
16.
Kączkowski
,
Z.
, 1963, “
Vibration of a Beam Under a Moving Load
,”
Proc. Vib. Probl.
0032-9576,
4
(
4
), pp.
357
373
.
17.
Reipert
,
Z.
, 1969, “
Vibration of a Beam Arbitrarily Supported on Its Edges Under Moving Load
,”
Proc. Vib. Probl.
0032-9576,
2
(
10
), pp.
249
260
.
18.
Reipert
,
Z.
, 1970, “
Vibration of Frames Under Moving Load
,”
Archiwum Inżynierii Lądowej
,
16
(
3
), pp.
419
447
.
You do not currently have access to this content.