We consider the dynamical response of a finite, simply supported Timoshenko beam loaded by a force moving with a constant velocity. The classical solution for the transverse displacement and the rotation of the cross section of a Timoshenko beam has a form of a sum of two infinite series, one of which represents the force vibrations (aperiodic vibrations) and the other one free vibrations of the beam. We show that one of the series, which represents aperiodic (force) vibrations of the beam, can be presented in a closed form. The closed form solutions take different forms depending if the velocity of the moving force is smaller or larger than the velocities of certain shear and bar velocities.
Issue Section:
Technical Briefs
1.
Fryba
, L.
, 1999, Vibration of Solids and Structures Under Moving Loads
, Telford
, London
.2.
Tung
, C. C.
, 1969, “Response of Highway Bridges to Renewal Traffic Loads
,” J. Engrg. Mech. Div.
0044-7951, 95
, pp. 41
–57
.3.
Sieniawska
, R.
, and Śniady
, P.
, 1990, “First Passage Problem of the Beam Under a Random Stream of Moving Forces
,” J. Sound Vib.
0022-460X, 136
, pp. 177
–185
.4.
Achenbach
, J. D.
, and Sun
, C. T.
, 1965, “Moving Load on a Flexibly Supported Timoshenko Beam
,” Int. J. Solids Struct.
0020-7683, 1
(4
), pp. 353
–370
.5.
Florence
, A. L.
, 1965, “Travelling Force on a Timoshenko Beam
,” ASME J. Appl. Mech.
0021-8936, 32
(2
), pp. 351
–358
.6.
Steel
, C. R.
, 1968, “The Timoshenko Beam With a Moving Load
,” ASME J. Appl. Mech.
0021-8936, 35
(3
), pp. 481
–488
.7.
Tang
, S. C.
, 1966, “Travelling Force on a Timoshenko Beam
,” ASME J. Appl. Mech.
0021-8936, 33
(1
), pp. 233
–234
.8.
Bogacz
, R.
, Nowakowski
, S.
, and Popp
, K.
, 1986, “On the Stability of a Timoshenko Beam on an Elastic Foundation Under a Moving Spring-Mass System
,” Acta Mech.
0001-5970, 61
, pp. 117
–127
.9.
Katz
, R.
, Lee
, C. W.
, Ulsoy
, A. G.
, and Scott
, R. A.
, 1988, “The Dynamic Response of a Rotating Shaft Subject to a Moving Load
,” J. Sound Vib.
0022-460X, 122
(1
), pp. 131
–148
.10.
Zu
, J. W.-Z.
, and Han
, R. P.S.
, 1994, “Dynamic Response of a Spinning Timoshenko Beam With General Boundary Conditions and Subjected to a Moving Load
,” ASME J. Appl. Mech.
0021-8936, 61
, pp. 152
–160
.11.
Lee
, H. P.
, 1995, “Dynamic Response of a Rotating Timoshenko Shaft Subject to Axial Forces and Moving Loads
,” J. Sound Vib.
0022-460X, 181
(1
), pp. 169
–177
.12.
Felszeghy
, S. F.
, 1996a, “The Timoshenko Beam on an Elastic Foundation and Subject to a Moving Step Load. 1: Steady-State Response
,” ASME J. Vibr. Acoust.
0739-3717, 118
(3
), pp. 277
–284
.13.
Felszeghy
, S. F.
, 1996b, “The Timoshenko Beam on an Elastic Foundation and Subject to a Moving Step Load. 2: Transient Response
,” ASME J. Vibr. Acoust.
0739-3717, 118
(3
), pp. 285
–291
.14.
Wang
, R.-T.
, 1997, “Vibration of Multi-Span Timoshenko Beams to a Moving Force
,” J. Sound Vib.
0022-460X, 207
(5
), pp. 731
–742
.15.
Chen
, Y. H.
, Huang
, Y. H.
, and Shih
, C. T.
, 2001, “Infinite Timoshenko Beam on Viscoelastic Foundation to Harmonic Moving Load
,” J. Sound Vib.
0022-460X, 241
(5
), pp. 809
–824
.16.
Kączkowski
, Z.
, 1963, “Vibration of a Beam Under a Moving Load
,” Proc. Vib. Probl.
0032-9576, 4
(4
), pp. 357
–373
.17.
Reipert
, Z.
, 1969, “Vibration of a Beam Arbitrarily Supported on Its Edges Under Moving Load
,” Proc. Vib. Probl.
0032-9576, 2
(10
), pp. 249
–260
.18.
Reipert
, Z.
, 1970, “Vibration of Frames Under Moving Load
,” Archiwum Inżynierii Lądowej
, 16
(3
), pp. 419
–447
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.