Accumulative plastic deformation due to repeated loading is crucial to the lives of many mechanical components, such as gears, stamping dies, and rails in rail-wheel contacts. This paper presents a three-dimensional numerical model for simulating the repeated rolling or sliding contact of a rigid sphere over an elasto-plastic half-space. This model is a semi-analytical model based on the discrete convolution and fast Fourier transform algorithm. The half-space behaves either elastic-perfectly plastically or kinematic plastically. The analyses using this model result in histories of stress, strain, residual displacement, and plastic strain volume integral (PV) in the half-space. The model is examined through comparisons of the current results with those from the finite element method for a simple indentation test. The results of rolling contact obtained from four different hardening laws are presented when the load exceeds the theoretical shakedown limit. Shakedown and ratchetting behaviors are discussed in terms of the PV variation. The effect of friction coefficient on material responses to repeated sliding contacts is also investigated.

1.
Dautzenberg
,
J. H.
, and
Zaat
,
J. H.
, 1973, “
Quantitative Determination of Deformation of Sliding Wear
,”
Wear
0043-1648,
23
, pp.
9
19
.
2.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, London.
3.
Johnson
,
K. L.
, 1995, “
Contact Mechanics and the Wear of Metals
,”
Wear
0043-1648,
190
, pp.
162
170
.
4.
Kapoor
,
A.
, and
Johnson
,
K. L.
, 1994, “
Plastic Ratchetting as a Mechanism of Metallic Wear
,”
Proc. R. Soc. London, Ser. A
1364-5021,
445
, pp.
367
381
.
5.
Ponter
,
A. R. S.
,
Hearle
,
A. D.
, and
Johnson
,
K. L.
, 1985, “
Application of the Kinematical Shakedown Theorem to Rolling and Sliding Point Contacts
,”
J. Mech. Phys. Solids
0022-5096,
33
(
4
), pp.
339
362
.
6.
Kapoor
,
A.
,
Williams
,
J. A.
, and
Johnson
,
K. L.
, 1994, “
The Steady State Sliding of Rough Surfaces
,”
Wear
0043-1648,
175
, pp.
81
92
.
7.
Johnson
,
K. L.
, and
Shercliff
,
H. R.
, 1992, “
Shakedown of 2-Dimensional Asperities in Sliding Contact
,”
Int. J. Mech. Sci.
0020-7403,
34
(
5
), pp.
375
394
.
8.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1988, “
Analysis of Rolling Contact With Kinematic Hardening for Rail Steel Properties
,”
Wear
0043-1648,
122
, pp.
267
283
.
9.
Kulkarni
,
S. M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
Bhargava
,
V.
, 1990, “
Elastoplastic Finite Element Analysis of Three-Dimensional, Pure Rolling Contact at the Shakedown Limit
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
57
65
.
10.
Kulkarni
,
S. M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
Bhargava
,
V.
, 1991, “
Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact Above the Shakedown Limit
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
347
353
.
11.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
, 2002, “
Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
699
708
.
12.
Xu
,
B.
, and
Jiang
,
Y.
, 2002, “
Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
20
26
.
13.
Yu
,
M. M. H.
,
Moran
,
B.
, and
Keer
,
L. M.
, 1995, “
A Direct Analysis of Three-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
0742-4787,
117
, pp.
234
243
.
14.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
15.
Boucly
,
V.
,
Nelias
,
D.
,
Liu
,
S. B.
,
Wang
,
Q.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
16.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
494
502
.
17.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
18.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-level Multi-summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
19.
Liu
,
S. B.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-conforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
20.
Liu
,
S. B.
, and
Wang
,
Q.
, 2002, “
Study Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
21.
Liu
,
S. B.
,
Hua
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q.
, 2007, “
Tribological Modeling: Application of Fast Fourier Transform
,”
Tribol. Int.
0301-679X,
40
, pp.
1284
1293
.
22.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Clarendon Press
, Oxford, U.K.
23.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Central Electricity Generating Board, Report No. RD/B/N 731.
24.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
, 1996, “
A Universal Integration Algorithm for Rate-Dependent Elastoplasticity
,”
Comput. Struct.
0045-7949,
59
, pp.
1173
1184
.
25.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
26.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
27.
Nelias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-In Model
,”
ASME J. Tribol.
0742-4787,
128
, pp.
236
244
.
You do not currently have access to this content.