The phenomenon of elastic boundary layers under quasistatic loading is investigated using the Floquet–Bloch formalism for two-dimensional, isotropic, periodic lattices. The elastic boundary layer is a region of localized elastic deformation, confined to the free edge of a lattice. Boundary layer phenomena in three isotropic lattice topologies are investigated: the semiregular Kagome lattice, the regular hexagonal lattice, and the regular fully triangulated lattice. The boundary layer depth is on the order of the strut length for the hexagonal and the fully triangulated lattices. For the Kagome lattice, the depth of boundary layer scales inversely with the relative density. Thus, the boundary layer in a Kagome lattice of low relative density spans many cells.

1.
Fleck
,
N. A.
and
Qiu
,
X.
, 2007, “
The Damage Tolerance of Elastic-Brittle Two Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
0022-5096,
55
(
3
), pp.
562
588
.
2.
Kueh
,
A.
,
Soykasap
,
O.
, and
Pellegrino
,
S.
, 2005, “
Thermo-Mechanical Behaviour of Single-ply Triaxial Weave Carbon Fibre Reinforced Plastic
,”
Proceedings of the European Conference on Spacecraft Structures, Materials and Testing
,
Noordwijk
,
The Netherlands
.
3.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1982,
Theory of Elasticity
, 3rd ed.
McGraw-Hill
,
Singapore
.
4.
Srikantha Phani
,
A.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
, 2006, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
4
), pp.
1995
2005
.
5.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
, 2nd ed.,
North-Holland
,
New York
.
6.
Weaver
,
W.
, and
Jonhston
,
P. R.
, 1987,
Structural Dynamics by Finite Elements
, 1st ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Brillouin
,
L.
, 1953,
Wave Propagation in Periodic Structures
, 2nd ed.,
Dover
,
New York
.
8.
Kittel
,
C.
, 1962,
Elementary Solid State Physics: A Short Course
, 1st ed.,
Wiley
,
New York
.
9.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
, 1997, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
0022-460X,
207
(
4
), pp.
521
535
.
10.
Hutchinson
,
R. G.
, 2004, “
Mechanics of Lattice Materials
,” Ph.D thesis, University of Cambridge, Cambridge, UK.
11.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
, 2006, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
756
782
.
You do not currently have access to this content.