Moving surface loads cause crack extension at a constant subcritical speed between perfectly bonded materials. The materials differ only in thermal properties and are governed by coupled thermoelastic equations that admit as special cases Fourier heat conduction and thermal relaxation with one or two relaxation times. Convection from the crack surfaces is allowed and for the latter two models is itself influenced by thermal relaxation. A dynamic steady state of plane strain is assumed. Fourier heat conduction is shown to dominate away from the crack edge at low speeds; solution behavior at the crack edge at high speeds depends upon the particular thermal model. Thermal mismatch is seen to cause solution behavior similar to that for the isothermal bimaterial, and so insight into the case of general material mismatch is provided.

1.
Cagniard
,
L.
, 1962,
Reflection and Refraction of Progressive Seismic Waves
, (
E. A.
Flinn
and
C. H.
Dix
, translators),
McGraw-Hill
,
New York
.
2.
Jones
,
R. M.
, 2002,
Mechanics of Composite Materials
,
Taylor & Francis
,
New York
.
3.
England
,
A. H.
, 1965, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
400
402
.
4.
Erdogan
,
F.
, 1965, “
Stress Distribution in Bonded Material With Cracks
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
403
410
.
5.
Rice
,
J. R.
, and
Sih
,
G. C.
, 1965, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
418
423
.
6.
Chadwick
,
P.
, 1960, “
Thermoelasticity: The Dynamical Theory
,”
Progress in Solid Mechanics
, Vol.
1
,
I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, pp.
265
330
.
7.
Chandrasekharia
,
D. S.
, 1986, “
Thermoelasticity With Second Sound
,”
Appl. Mech. Rev.
0003-6900,
39
, pp.
355
376
.
8.
Brock
,
L. M.
, 2007, “
Dynamic Crack Extension Along an Interface of Materials That Differ in Thermal Properties: With and Without Thermal Relaxation
,”
Acta Mech.
0001-5970, in press.
9.
Davis
,
J. R.
, ed., 1998,
Metals Handbook Desk Edition
,
ASM
,
Metals Park, OH
.
10.
Ewalds
,
H. L.
, and
Wanhill
,
R. J. H.
, 1985,
Fracture Mechanics
,
Edward Arnold
,
London
.
11.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1985,
Theory of Thermal Stresses
,
Krieger
,
Malabar, FL
.
12.
Brock
,
L. M.
, 1999, “
Process-Altered Surface Convection Effects in a Coupled Thermoelastic Analysis of Rapid Sliding Indentation With Friction
,”
J. Therm. Stresses
0149-5739,
22
, pp.
737
756
.
13.
Lord
,
H. W.
, and
Shulman
,
Y.
, 1967, “
Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
297
309
.
14.
Green
,
A. E.
, and
Lindsay
,
K. A.
, 1972, “
Thermoelasticity
,”
J. Elast.
0374-3535,
2
, pp.
1
7
.
15.
Brock
,
L. M.
, 2005, “
Thermal Relaxation Effects in Rapid Sliding Contact With Friction
,”
Acta Mech.
0001-5970,
176
, pp.
185
196
.
16.
Brock
,
L. M.
, and
Georgiadis
,
H. G.
, 2001, “
An Illustration of Sliding Contact at Any Constant Speed on Highly Elastic Half-Spaces
,”
IMA J. Appl. Math.
0272-4960,
66
, pp.
551
566
.
17.
Brock
,
L. M.
, 2006, “
Debonding of a Thermoelastic Material From a Rigid Substrate at Any Constant Speed
,”
Am. Mineral.
0003-004X,
184
, pp.
185
196
.
18.
Brock
,
L. M.
, 2007, “
Analysis of Stoneley Signals in Perfectly Bonded Dissimilar Thermoelastic Half-Spaces With and Without Thermal Relaxation
,”
J. Mech. Mater. Struct.
1559-3959, in press.
19.
Brock
,
L. M.
, 2007, “
Stoneley Wave Generation in Joined Materials With and Without Thermal Relaxation Due to Thermal Mismatch
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1019
1025
.
20.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
Elsevier
,
Amsterdam
.
21.
Sharma
,
J. N.
, and
Sharma
,
P. K.
, 2002, “
Free Vibrations of Homogeneous Transversely Isotropic Thermoelastic Cylindrical Panel
,”
J. Therm. Stresses
0149-5739,
25
, pp.
169
182
.
22.
Fan
,
Q.-M.
, and
Lu
,
W.-Q.
, 2002, “
A New Numerical Method to Simulate the Non-Fourier Heat Conduction in a Single-Phase Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2815
2821
.
23.
van der Pol
,
B.
, and
Bremmer
,
H.
, 1950,
Operational Calculus Based on the Two-Sided Laplace Integral
,
Cambridge University Press
,
Cambridge
.
24.
Sneddon
,
I. N.
, 1972,
The Use of Integral Transforms
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.