This paper presents component-level empirical damage evolution regression models based on loads and damage information that do for mechanical damage prediction what the Paris law does for predicting crack growth under fatigue loading. Namely, these regression models combine information about the current damage state and internal system loads to predict the progress of damage to failure. One of the drawbacks of Paris-like crack evolution laws is that localized information about the loading (stress) and damage (crack length) is required. In structural health monitoring applications, it is not feasible to instrument every potential crack initiation region to collect this localized information. The component-level damage evolution regression models developed here only require global measurements that quantify the damage and loading at the level of the component rather than at the site of damage. This paper develops damage evolution regression models for an automotive sway bar link undergoing axial fatigue loading with two different damage mechanisms at a weldment and at an electrical discharge machining notch. Restoring force diagrams are used to calculate the load indicators as damage progresses and transmissibility functions are used to calculate the damage indicator during tests to failure. A component-level load intensity factor (ΔK) is calculated during these tests so that the rate of damage accumulation can be used to predict the growth of damage and ultimate failure.

1.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
, 1961, “
A Rational Analytic Theory of Fatigue
,”
The Trend in Engineering
, University of Washington,
13
(
1
), pp.
9
13
.
2.
Paris
,
P. C.
, 1964, “
Fatigue—An Interdisciplinary Approach
,”
Proceedings of the Tenth Sagamore Conference
,
Syracuse University Press
,
Syracuse, New York
, p.
107
.
3.
Masri
,
S. F.
, and
Caughey
,
T. K.
, 1979, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
433
447
.
4.
Masri
,
S. F.
,
Sassi
,
H.
, and
Caughey
,
T. K.
, 1982, “
Nonparametric Identification of Nearly Arbitrary Nonlinear Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
619
628
.
5.
Masri
,
S. F.
,
Miller
,
R. K.
,
Saud
,
A. F.
, and
Caughey
,
T. K.
, 1987, “
Identification of Nonlinear Vibrating Structures: Part I—Formulation
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
918
922
.
6.
Masri
,
S. F.
,
Miller
,
R. K.
,
Saud
,
A. F.
, and
Caughey
,
T. K.
, 1987, “
Identification of Nonlinear Vibrating Structures: Part II—Applications
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
923
930
.
7.
Surace
,
C.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1992, “
On the Nonlinear Characteristics of Automotive Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
206
(
D1
), pp.
3
16
.
8.
Haroon
,
M.
,
Adams
,
D. E.
, and
Luk
,
Y. W.
, 2005, “
A Technique for Estimating Linear Parameters Using Nonlinear Restoring Force Extraction in the Absence of an Input Measurement
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
5
), pp.
483
492
.
9.
Haroon
,
M.
,
Adams
,
D. E.
,
Luk
,
Y. W.
, and
Ferri
,
A. A.
, 2005, “
A Time and Frequency Domain Approach for Identifying Non-Linear Mechanical System Models in the Absence of an Input Measurement
,”
J. Sound Vib.
0022-460X,
283
, pp.
1137
1155
.
10.
Haroon
,
M.
, and
Adams
,
D. E.
, 2005, “
Active and Event-Driven Passive Mechanical Fault Identification in Ground Vehicle Suspension Systems
,”
Proceedings of the IMECE: ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–11.
11.
Zimmerman
,
D. C.
,
Kaouk
,
M.
, and
Simmermacher
,
T.
, 1995, “
Structural Damage Detection Using Frequency Response Functions
,”
Proceedings of the 13th International Modal Analysis Conference
, pp.
179
184
.
12.
Schulz
,
M. J.
,
Naser
,
A. S.
,
Pai
,
P. F.
,
Linville
,
M. S.
, and
Chung
,
J.
, 1997, “
Detecting Structural Damage Using Transmittance Functions
,”
Proceedings of the 15th International Modal Analysis Conference
, pp.
638
644
.
13.
James
,
G. H.
III
,
Zimmerman
,
D. C.
, and
Mayes
,
R. L.
, 1998, “
An Experimental Study of Frequency Response Function (FRF) Based Damage Assessment Tools
,”
Proceedings of the 16th International Modal Analysis Conference
, pp.
151
157
.
14.
Zhang
,
H.
,
Schulz
,
M. J.
,
Naser
,
A.
,
Ferguson
,
F.
, and
Pai
,
P. F.
, 1999, “
Structural Health Monitoring Using Transmittance Functions
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
5
), pp.
765
787
.
15.
Worden
,
K.
, 1997, “
Damage Detection Using a Novelty Measure
,”
Proceedings of the 15th Modal Analysis Conference
, pp.
631
637
.
16.
Johnson
,
T.
, and
Adams
,
D. E.
, 2001, “
Transmissibility as a Differential Indicator of Structural Damage
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
4
), pp.
634
641
.
17.
Stites
,
N.
,
Adams
,
D. E.
,
Sterkenburg
,
R.
, and
Ryan
,
T.
, 2006, “
Integrated Health Monitoring of Gas Turbine Wire Harnesses and Connectors
,”
Proceedings of the Third European Workshop on Structural Health Monitoring
, Granada, Spain, Jul. 5–7.
18.
Cafferty
,
S.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1995, “
Characterization of Automotive Shock Absorbers Using Random Excitation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
209
, pp.
239
248
.
19.
Johnson
,
T. J.
, 2002, “
Analysis of Dynamic Transmissibility as a Feature for Structural Damage Detection
,” MS thesis, Department of Mechanical Engineering, Purdue University, West Lafayette, IN.
20.
Grandt
,
A. F.
, 2004,
Fundamentals of Structural Integrity: Damage Tolerant Design and Nondestructive Evaluation
,
Wiley
,
New York
, Chap. 3.
You do not currently have access to this content.