Free vibrations of a double-walled carbon nanotube (DWNT) are studied. The inner and outer carbon nanotubes are modeled as two individual elastic beams interacting each other by van der Waals forces. An original method is proposed to calculate the first seven order resonant frequencies and relative vibrational modes. Detailed results are demonstrated for DWNTs according to the different boundary conditions between inner and outer tubes, such as fixed-free, cantilever-free, fixed-simple and fixed-fixed (reduced form) supported ends. Our results indicate that there is a special invariable frequency for a DWNT that is not affected by different combinations of boundary conditions. All vibrational modes of the DWNT must be coaxial when the resonant frequency is smaller than this frequency. Some noncoaxial vibrations will occur when their resonant frequencies exceed the frequency. Especially, the first noncoaxial resonant frequency is still invariable for all different boundary conditions. A change of resonant frequency for various lengths of DWNTs is discussed in detail. In addition, our model predicts a new coaxial-noncoaxial vibrational mode in fixed-simple supports for inner and outer tubes of a DWNT.

1.
Ball
,
P.
, 2001, “
Roll up for the Revolution
,”
Nature (London)
0028-0836,
414
, pp.
142
144
.
2.
Baughman
,
R. H.
,
Zakhidov
,
A. A.
, and
de Heer
,
W. A.
, 2002, “
Carbon Nanotubes: The Route Toward Applications
,”
Science
0036-8075,
297
, pp.
787
792
.
3.
Goh
,
C. S.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
, 2006, “
Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes
,”
Mater. Sci. Eng., A
0921-5093,
423
, pp.
153
156
.
4.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
5.
Ru
,
C. Q.
, 2004, “
Elastic Models for Carbon Nanotubes
,”
Encyclopedia of Nanoscience and Nanotechnology
, Vol.
2
,
H. S.
Nalwa
ed.,
American Scientific
,
Stevenson Ranch, CA
, pp.
731
744
.
6.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
7.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Xie
,
X. Y.
, 2005, “
Free Transverse Vibrations of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,”
Phys. Rev. B
0163-1829,
71
, p.
195404
.
8.
Wang
,
L. F.
, and
Hu
,
H. Y.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
195412
.
9.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2005, “
Terahertz Vibration of Short Carbon Nanotubes Modeled as Timoshenko Beams
,”
ASME J. Appl. Mech.
0021-8936,
72
, p.
10
17
.
10.
Xu
,
K. Y.
,
Guo
,
X. N.
, and
Ru
,
C. Q.
, 2006, “
Vibration of a Double-Walled Carbon Nanotube Aroused by Nonlinear Intertube van der Waals Forces
,”
J. Appl. Phys.
0021-8979,
99
, p.
064303
.
11.
Wang
,
C. M.
,
Tan
,
V. B. C.
, and
Zhang
,
Y. Y.
, 2006, “
Timoshenko Beam Model for Vibration Analysis of Multi-Walled Carbon Nanotubes
,”
J. Sound Vib.
0022-460X,
294
, pp.
1060
1072
.
12.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
, pp.
1513
1519
.
13.
Harik
,
V. M.
, 2001, “
Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods
,”
Solid State Commun.
0038-1098,
120
, pp.
331
335
.
14.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2002, “
Noncoaxial Resonance of an Isolated Multiwall Carbon Nanotube
,”
Phys. Rev. B
0163-1829,
66
, p.
233402
.
15.
Rueckers
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. T.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
, 2000, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
0036-8075,
289
, p.
94
97
.
16.
Postma
,
H. W. C.
,
Teepen
,
T.
,
Yao
,
Z.
,
Grifoni
,
M.
, and
Dekker
,
C.
, 2000, “
Carbon Nanotube Single-Electron Transistors at Room Temperature
,”
Science
0036-8075,
293
, pp.
76
79
.
17.
Roschier
,
L.
,
Tarkiainen
,
R.
,
Ahlskog
,
M.
,
Paalanen
,
M.
, and
Hakonen
,
P.
, 2001, “
Multiwalled Carbon Nanotubes as Ultrasensitive Electrometers
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
3295
3297
.
18.
Ahlskog
,
M.
,
Hakonen
,
P.
,
Paalanen
,
M.
,
Roschier
,
L.
, and
Tarkiainen
,
R.
, 2001, “
Multiwalled Carbon Nanotubes as Building Blocks in Nanoelectronics
,”
J. Low Temp. Phys.
0022-2291,
124
, pp.
335
352
.
19.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
, 2002, “
Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
0957-4484,
13
, pp.
120
131
.
20.
Snow
,
E. S.
,
Campbell
,
P. M.
, and
Novak
,
J. P.
, 2002, “
Single-Wall Carbon Nanotube Atomic Force Microscope Probes
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2002
2004
.
21.
Ishikawa
,
M.
,
Yoshimura
,
M.
, and
Ueda
,
K.
, 2002, “
A Study of Friction by Carbon Nanotube Tip
,”
Appl. Surf. Sci.
0169-4332,
188
, pp.
456
459
.
22.
Zhao
,
Y.
,
Ma
,
C. C.
,
Chen
,
G.
, and
Jiang
,
Q.
, 2003, “
Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,”
Phys. Rev. Lett.
0031-9007,
91
, pp.
175504
.
23.
Li
,
C.
, and
Chou
,
T. W.
, 2004, “
Vibrational Behaviors of Multiwalled Carbon Nanotube Based Nano-Mechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
121
123
.
24.
Maiti
,
A.
, 2001, “
Application of Carbon Nanotubes as Electromechanical Sensors: Results From First-Principles Simulations
,”
Phys. Status Solidi B
0370-1972,
226
, pp.
87
93
.
25.
Lauderdale
,
T. A.
, and
O’Reilly
,
O. M.
, 2005, “
Modeling MEMS Resonators With Rod-Like Components Accounting for Anisotropy, Temperature, and Strain Dependencies
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
6523
659
.
You do not currently have access to this content.