This paper outlines a multiscale model to quantitatively describe the chemomechanical coupling between adsorbed molecules and thin elastic films. The goal is to provide clear, quantitative connections between molecular interactions, adsorption distribution, and surface stress, which can be integrated with conventional thin film mechanics to quantify device performance in terms of molecular inputs. The decoupling of molecular and continuum frameworks enables a straightforward analysis of arbitrary structures and deformation modes, e.g., buckling and plate/membrane behavior. Moreover, it enables one to simultaneously identify both chemical properties (e.g., binding energy and grafting density) and mechanical properties (e.g., modulus and film geometry) that result in chemically responsive devices. We present the governing equations for scenarios where interactions between adsorbed molecules can be described in terms of pair interactions. These are used to quantify the mechanical driving forces that can be generated from adsorption of double-stranded DNA and C60 (fullerenes). The utility of the framework is illustrated by quantifying the performance of adsorption-driven cantilevers and clamped structures that experience buckling. We demonstrate that the use of surface-grafted polyelectrolytes (such as DNA) and ultracompliant elastomer structures is particularly attractive since deformation can be tuned over a very wide range by varying grafting density and chemical environment. The predictions illustrate that it is possible to construct (1) adsorption-based tools to quantify molecular properties such as polymer chain flexibility and (2) chemically activated structures to control flow in microfluidic devices.

1.
Chakraborty
,
A. R.
, and
Golumbfskie
,
A. J.
, 2001 “
Polymer Adsorption-Driven Self-Assembly of Nanostructures
,”
Annu. Rev. Phys. Chem.
0066-426X,
52
, pp.
537
573
.
2.
Lang
,
H. P
,
Hegner
,
M.
, and
Gerber
,
C.
, 2005, “
Cantilever Array Sensors
,”
Mater. Today
1369-7021,
8
, pp.
30
36
.
3.
Carrascosa
,
L. G.
,
Morena
,
M.
,
Alvarez
,
M.
, and
Lechuga
,
L. M.
, 2006, “
Nanomechanical Biosensors: A New Sensing Tool
,”
Trends Analyt. Chem.
0167-2940,
25
, pp.
196
206
.
4.
Raiteri
,
R.
,
Grattarola
,
M.
,
Butt
H.-J.
, and
Skladal
,
P.
, 2001, “
Micromechanical Cantilever-Based Biosensors
,”
Sens. Actuators B
0925-4005,
79
, pp.
115
126
.
5.
Hagan
,
M. F.
,
Majumdar
,
A.
, and
Chakraborty
,
A. K.
, 2002, “
Nanomechanical Forces Generated by Surface Grafted DNA
,”
J. Phys. Chem.
0022-3654,
106
, pp.
10163
10173
.
6.
Liu
,
F.
,
Zhang
,
Y.
, and
Ou-Yang
,
Z.
, 2003, “
Flexoelectric Origin of Nanomechanic Deflection in DNA-Microcantilever System
,”
Biosens. Bioelectron.
0956-5663,
18
, pp.
655
660
.
7.
Calleja
,
M.
,
Nordstrom
,
M.
,
Alvarez
,
M.
,
Tamayo
,
J.
,
Lechuga
,
L. M.
, and
Boisen
,
A.
, 2005, “
Highly Sensitive Polymer-Based Cantilever-Sensors for DNA Detection
,”
Ultramicroscopy
0304-3991,
105
, pp.
215
222
.
8.
Lavrik
,
N. V.
,
Tipple
,
C. A.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
, 2001, “
Gold Nanostructures for Transduction of Biomolecular Interactions Into Micrometer Scale Movements
,”
Biomed. Microdevices
1387-2176,
3
, pp.
35
41
.
9.
Zhong
,
J.-Z.
,
Seker
,
E.
,
Bart-Smith
,
H.
,
Begley
,
M. R.
,
Kelly
,
R. G.
,
Zangari
,
G.
,
Lye
,
W.-K.
, and
Reed
,
M. L.
, 2006, “
Mitigation of Tensile Failure in Released Nanoporous Metal Microstructures Via Thermal Treatment
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
133104
.
10.
Bumba
,
G.-G.
,
Kircher
,
G.
,
Wolkenhauer
,
M.
,
Berger
,
R.
, and
Gutmann
,
J. S.
, 2004, “
Synthesis and Characterization of Polymer Brushes on Micromechanical Cantilevers
,”
Macromol. Chem. Phys.
1022-1352,
205
, pp.
1713
1720
.
11.
Abu-Lail
,
N. I.
,
Kaholek
,
M.
,
LaMattina
,
B.
,
Clark
,
R. L.
, and
Zauscher
,
S.
, 2006, “
Micro-Cantilevers With End-Grafted Stimulus-Responsive Polymer Brushes for Actuation and Sensing
,”
Sens. Actuators B
0925-4005,
114
(
1
), pp.
371
378
.
12.
Castelino
,
K.
,
Kannan
,
B.
, and
Majumdar
,
A.
, 2005, “
Characterization of Grafting Density and Binding Efficiency of DNA and Proteins on Gold Surfaces
,”
Langmuir
0743-7463,
21
, pp.
1956
1961
.
13.
Strey
,
H. H.
,
Parsegian
,
V. A.
, and
Podgornik
,
R.
, 1999, “
Equation of State for Polymer Liquid Crystals: Theory and Experiment
,”
Phys. Rev. E
1063-651X,
59
, pp.
999
1008
.
14.
Begley
,
M. R.
,
Utz
,
M.
, and
Komaragiri
,
U.
, 2005, “
Chemo-Mechanical Interactions Between Adsorbed Molecules and Thin Elastic Films
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2119
2140
.
15.
Suresh
,
S.
, and
Freund
,
B.
, 2003,
Thin Film Materials
,
Cambridge University Press
,
Cambridge, England
.
16.
Mirkin
,
C. A.
, and
Caldwell
,
W. B.
, 1996, “
Thin Film Fullerene-Based Materials
,”
Tetrahedron
0040-4020,
52
, pp.
5113
5130
.
17.
Tau
,
M.
,
Parola
,
A.
,
Pini
,
D.
, and
Reatto
,
L.
, 1995, “
Differential Theory of Fluids Below the Critical Temperature: Study of the Lennard-Jones Fluid and a Model of C60
,”
Phys. Rev. E
1063-651X,
52
, pp.
2644
2656
.
18.
Pacheco
,
J. M.
, and
Prates Ramalho
,
J. P.
, 1997, “
First-Principles Determination of the Dispersion Interaction Between Fullerenes and Their Intermolecular Potential
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
3873
3876
.
19.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
, 2000, “
Carbon Nanotubes, Buckyballs, Ropes and a Universal Graphitic Potential
,”
Phys. Rev. B
0163-1829,
62
, pp.
13104
13110
.
20.
Begley
,
M. R.
, 2005, “
The Impact of Materials Selection and Geometry on Multifunctional Bilayer Microsensors and Actuators
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2379
2388
.
21.
Diaz-Quijada
,
G. A.
, and
Wayner
,
D. M.
, 2004, “
A Simple Approach to Micropatterning and Surface Modification of Poly(dimethylsiloxane)
,”
Langmuir
0743-7463,
20
, pp.
9607
9611
.
You do not currently have access to this content.