The motivation of this paper is to propose a methodology for analyzing the robust design optimization problem of complex dynamical systems excited by deterministic loads but taking into account model uncertainties and data uncertainties with an adapted nonparametric probabilistic approach, whereas only data uncertainties are generally considered in the literature by using a parametric probabilistic approach. The possible designs are represented by a numerical finite element model whose design parameters are deterministic and belong to an admissible set. The optimization problem is formulated for the stochastic system as the minimization of a cost function associated with the random response of the stochastic system including the variability of the stochastic system induced by uncertainties and the bias corresponding to the distance of the mean random response to a given target. The gradient and the Hessian of the cost function with respect to the design parameters are explicitly calculated. The complete theory and a numerical application are presented.

1.
Petiau
,
C.
, 1991, “
Structural Optimization of Aircraft
,”
Thin-Walled Struct.
0263-8231,
11
(
1–2
), pp.
43
64
.
2.
Ghanem
,
R.
, and
Spanos
,
P.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
3.
Kleiber
,
M.
,
Tran
,
D.
, and
Hien
,
T.
, 1992,
The Stochastic Finite Element Method
,
Wiley
,
New York
.
4.
Ghanem
,
R.
, 1999, “
Ingredients for a General Purpose Stochastic Finite Elements Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
(
1–4
), pp.
19
34
.
5.
Babuska
,
I.
, and
Chatzipantelidis
,
P.
, 2002, “
On Solving Elliptic Stochastic Partial Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
37–38
), pp.
4093
4122
.
6.
Schuëller
,
G.
, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
12
(
4
), pp.
197
321
.
7.
Pradlwarter
,
H.
,
Schueller
,
G.
, and
Szekely
,
G.
, 2002, “
Random Eigenvalue Problems for Large Systems
,”
Comput. Struct.
0045-7949,
80
(
27–30
), pp.
2415
2424
.
8.
Soize
,
C.
, 2005, “
A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics
,”
J. Sound Vib.
0022-460X,
288
(
3
), pp.
623
652
.
9.
Soize
,
C.
, 2000, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
0266-8920,
15
(
3
), pp.
277
294
.
10.
Soize
,
C.
, 2001, “
Maximum Entropy Approach for Modeling Random Uncertainties in Transient Elastodynamics
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
5
), pp.
1979
1996
.
11.
Soize
,
C.
, 2005, “
Random Matrix Theory for Modeling Random Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
12–16
), pp.
1333
1366
.
12.
Taguchi
,
G.
,
Elsayed
,
E.
, and
Hsiang
,
T.
, 1989,
Quality Engineering in Production Systems
,
McGraw-Hill
,
New York
.
13.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pouhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
74
80
.
14.
Ramakrishnan
,
B.
, and
Rao
,
S.
, 1996, “
A General Loss Function Based Optimization Procedure for Robust Design
,”
Econom. Inquiry
0095-2583,
25
(
4
), pp.
255
276
.
15.
Lee
,
K.-H.
, and
Park
,
G.-J.
, 2001, “
Robust Optimization Considering Tolerances of Design Variables
,”
Comput. Struct.
0045-7949,
79
(
1
), pp.
77
86
.
16.
Jung
,
D.
, and
Lee
,
B.
, 2002, “
Development of a Simple and Efficient Method for Robust Design Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
9
), pp.
2201
2215
.
17.
Sandgren
,
E.
, and
Cameron
,
T.
, 2002, “
Robust Design Optimization of Structures Through Consideration of Variation
,”
Comput. Struct.
0045-7949,
80
(
20–21
), pp.
1605
1613
.
18.
Doltsinis
,
I.
, and
Kang
,
Z.
, 2004, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
23–26
), pp.
2221
2237
.
19.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
, 2005, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
0045-7949,
83
(
4–5
), pp.
315
326
.
20.
Papadrakakis
,
M.
,
Lagaros
,
N.
, and
Plevris
,
V.
, 2005, “
Design Optimization of Steel Structures Considering Uncertainties
,”
Eng. Struct.
0141-0296,
27
(
9
), pp.
1408
1418
.
21.
Duchereau
,
J.
, and
Soize
,
C.
, 2006, “
Transient Dynamics in Structures With Nonhomogeneous Uncertainties Induced by Complex Joints
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
4
), pp.
954
967
.
22.
Chebli
,
H.
, and
Soize
,
C.
, 2004, “
Experimental Validation of a Nonparametric Probabilistic Model of Nonhomogeneous Uncertainties for Dynamical Systems
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
2
), pp.
697
705
.
23.
Durand
,
J.-F.
,
Gagliardini
,
L.
, and
Soize
,
C.
, 2005, “
Nonparametric Modeling of the Variability of Vehicle Vibroacoustic Behavior
,”
Proceedings on the SAE Noise and Vibration Conference and Exhibition
,
Traverse City, MI
, May 16–19.
24.
Chen
,
C.
,
Duhamel
,
D.
, and
Soize
,
C.
, 2006, “
Probabilistic Approach for Model and Data Uncertainties and Its Experimental Identification in Structural Dynamics: Case of Composite Sandwich Panels
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
64
81
.
25.
Soize
,
C.
, 2005, “
Probabilistic Models for Computational Stochastic Mechanics and Applications
,”
Proceedings on the Ninth International Conference on Structural Safety and Reliability ICOSSAR’05
,
G.
Augusti
,
G. I.
Schueller
, and
M.
Ciampoli
, eds.,
Rome, Italy
, Jun. 19–23,
Millpress
,
Rotterdam, Netherlands
.
26.
Capiez-Lernout
,
E.
,
Soize
,
C.
,
Lombard
,
J.-P.
,
Dupont
,
C.
, and
Seinturier
,
E.
, 2005, “
Blade Manufacturing Tolerances Definition for a Mistuned Industrial Bladed Disk
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
3
), pp.
621
628
.
27.
Capiez-Lernout
,
E.
,
Pellissetti
,
M.
,
Pradlwarter
,
H.
,
Schueller
,
G.
, and
Soize
,
C.
, 2006, “
Data and Model Uncertainties in Complex Aerospace Engineering Systems
,”
J. Sound Vib.
0022-460X,
295
(
3–5
), pp.
923
938
.
28.
Craig
,
R.
, and
Bampton
,
M.
, 1968, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1313
1319
.
29.
Mac Neal
,
R.
, 1971, “
A Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
0045-7949,
1
(
4
), pp.
581
601
.
30.
Benfield
,
W.
, and
Hruda
,
R.
, 1971, “
Vibration Analysis of Structures by Component Mode Substitution
,”
AIAA J.
0001-1452,
9
(
7
), pp.
1255
1261
.
31.
Rubin
,
S.
, 1975, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
0001-1452,
13
(
8
), pp.
995
1006
.
32.
Morand
,
H.-P.
, and
Ohayon
,
R.
, 1979, “
Substructure Variational Analysis of the Vibrations of Coupled Fluid-Structure Systems. Finite Element Results
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
(
5
), pp.
741
755
.
33.
Farhat
,
C.
, and
Geradin
,
M.
, 1994, “
On a Component Mode Synthesis Method and Its Application to Incompatible Substructures
,”
Comput. Struct.
0045-7949,
51
(
5
), pp.
459
473
.
34.
Park
,
K.-C.
, 2004, “
Partitioned Component Mode Synthesis Via a Flexibility Approach
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1236
1245
.
35.
Fletcher
,
R.
, 1980,
Practical Methods of Optimization, Constrained Optimization
,
Wiley
,
New York
, Vol.
2
.
36.
Powell
,
M.
, 1983, “
Variable Metric Methods for Constrained Optimization
,”
Mathematical Programming: The State of the Art
,
A.
Bachem
,
M.
Grotschel
, and
B.
Korte
, eds.,
Springer Verlag
,
Berlin
, pp.
288
311
.
37.
Serfling
,
R.
, 1980,
Approximation Theorems of Mathematical Statistics
,
Wiley
,
New York
.
You do not currently have access to this content.