Based on the surface elasticity theory and using a local asymptotic approach, we analyzed the influences of surface energy on the stress distributions near a blunt crack tip. The dependence relationship of the crack-tip stresses on surface elastic parameters is obtained for both mode-I and mode-III cracks. It is found that when the curvature radius of a crack front decreases to nanometers, surface energy significantly affects the stress intensities near the crack tip. Using a kind of surface elements, we also performed finite element simulations to examine the surface effects on the near-tip stresses. The obtained analytical solution agrees well with the numerical results.
Issue Section:
Research Papers
1.
Buehler
, M. J.
, and Gao
, H. J.
, 2006, “Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips
,” Nature (London)
0028-0836, 439
, pp. 307
–310
.2.
Buehler
, M. J.
, Abraham
, F. F.
, and Gao
, H. J.
, 2003, “Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale
,” Nature (London)
0028-0836, 426
, pp. 141
–146
.3.
Buehler
, M. J.
, Gao
, H. J.
, and Huang
, Y. G.
, 2004, “Continuum and Atomistic Studies of the Near-Crack Field of a Rapidly Propagating Crack in a Harmonic Lattice
,” Theor. Appl. Fract. Mech.
0167-8442, 41
, pp. 21
–42
.4.
Abraham
, F. F.
, Broughton
, J. Q.
, Bernstein
, N.
, and Kaxiras
, E.
, 1998, “Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture
,” Europhys. Lett.
0295-5075, 44
, pp. 783
–787
.5.
Miller
, R. E.
, and Shenoy
, V. B.
, 2000, “Size-Dependent Elastic Properties of Nanosized Structural Elements
,” Nanotechnology
0957-4484, 11
, pp. 139
–147
.6.
Shenoy
, V. B.
, 2002, “Size-Dependent Rigidities of Nanosized Torsional Elements
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 4039
–4052
.7.
Sharma
, P.
, Ganti
, S.
, and Bhate
, N.
, 2003, “Effect of Surfaces on the Size-Dependent Elastic State of Nanoinhomogeneities
,” Appl. Phys. Lett.
0003-6951, 82
, pp. 535
–537
.8.
Cammarata
, R. C.
, Sieradzki
, K.
, and Spaepen
, F.
, 2000, “Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films
,” J. Appl. Phys.
0021-8979, 87
, pp. 1227
–1234
.9.
Dingreville
, R.
, Qu
, J. M.
, and Cherkaoui
, M.
, 2005, “Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,” J. Mech. Phys. Solids
0022-5096, 53
, pp. 1827
–1854
.10.
Gurtin
, M. E.
, and Murdoch
, A. I.
, 1975, “A Continuum Theory of Elastic Material Surfaces
,” Arch. Ration. Mech. Anal.
0003-9527, 57
, pp. 291
–323
.11.
Gurtin
, M. E.
, Weissmuller
, J.
, and Larche
, F.
, 1998, “A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,” Philos. Mag. A
0141-8610, 78
, pp. 1093
–1109
.12.
Yang
, F. Q.
, 2004, “Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,” J. Appl. Phys.
0021-8979, 95
, pp. 3516
–3520
.13.
Gao
, W.
, Yu
, S. W.
, and Huang
, G. Y.
, 2006, “Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems
,” Nanotechnology
0957-4484, 17
, pp. 1118
–1122
.14.
Sharma
, P.
, and Ganti
, S.
, 2004, “Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,” ASME, ASME J. Appl. Mech.
0021-8936, 71
, pp. 663
–670
.15.
Duan
, H. L.
, Wang
, J.
, Huang
, Z. P.
, and Karihaloo
, B. L.
, 2005, “Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,” J. Mech. Phys. Solids
0022-5096, 53
, pp. 1574
–1596
.16.
Wu
, C. H.
, 1999, “The Effect of Surface Stress on the Configurational Equilibrium of Voids and Cracks
,” J. Mech. Phys. Solids
0022-5096, 47
, pp. 2469
–2492
.17.
Horgland
, R. G.
, Daw
, M. S.
, and Hirth
, J. P.
, 1991, “Some Aspects of Forces and Fields in Atomic Models of Crack Tips
,” J. Mater. Res.
0884-2914, 6
, pp. 2565
–2571
.18.
Creager
, M.
, and Paris
, P. C.
, 1967, “Elastic Field Equations for Blunt Cracks With Reference to Stress Corrosion Cracking
,” Int. J. Fract. Mech.
0020-7268, 3
, pp. 247
–252
.19.
Smith
, E.
, 2004, “A Comparison of Mode I and Mode III Results for the Elastic Stress Distribution in the Immediate Vicinity of a Blunt Notch
,” Int. J. Eng. Sci.
0020-7225, 42
, pp. 473
–481
.20.
England
, A. E.
, 1971, Complex Variable Methods in Elasticity
, Wiley
, New York
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.