In this paper, we have introduced one-parameter Lorentzian spherical motion. In addition to that, we have given the relations between the absolute, relative, and sliding velocities of these motions. Furthermore, the relations between fixed and moving pole curves in the Lorentzian spherical motions have also been obtained. At the end of this study, we have expressed the Euler-Savary formula for the one-parameter Lorentzian spherical motions.
Issue Section:
Technical Papers
1.
Ergin
, A. A.
, 1989, “Lorentz Düzleminde Kinematik Geometri
,” Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.2.
Ikawa
, T.
, 2003, “Euler-Savary’s Formula on Minkowski Geometry
,” Balkan J. Geometry App.
, 8
(2
), pp. 31
–36
.3.
Bottema
, O.
, 1965, “Acceleration Axes in Spherical Kinematics
,” ASME J. Eng. Ind.
0022-0817, 85
, pp. 150
–154
.4.
Meyer Zur Capellen
, W.
, and Dittrich
, G.
, 1966, “The Instantaneous Distribution of a Spherically Moving System
,” J. Mech.
0022-2569, 1
, pp. 23
–24
.5.
Beyer
, O.
, 1963, Technische Raumkinematik
, Springer-Verlag
, Berlin
, pp. 207
–221
.6.
Bottema
, O.
, and Roth
, B.
, 1979, Theoretical Kinematics
, North-Holland
, Amsterdam
, pp. 193
–197
.7.
Muller
, H. R.
, 1963, “Kinematik Dersleri
,” (çeviri). Ankara Üniversitesi Fen-Fakültesi yayınları 27.8.
Chen
, Y. J.
, and Ravani
, B.
, 1987, “Offsets Surface Generation and Contouring in Computer Aided Design
,” ASME J. Mech., Transm., Autom. Des.
0738-0666, 109
, pp. 133
–142
.9.
Farouki
, R. T.
, 1986, “The Approximation of Non-Degenerate Offset Surface
,” Comput. Aided Geom. Des.
0167-8396, 3
, pp. 15
–43
.10.
Papaioannou
, S. G.
, and Kiritsis
, D.
, 1985, “An Application of Bertrand Curves and Surfaces to CAD∕CAM
,” Comput.-Aided Des.
0010-4485, 17
(8
), pp. 348
–352
.11.
Pennock
, G. R.
, and Sankaranarayanan
, H.
, 2003, “Path Curvature of a Geared Seven-Bar Mechanism
,” Mech. Mach. Theory
0094-114X, 38
, pp. 1345
–1361
.12.
Pennock
, G. R.
, and Raje
, N. N.
, 2004, “Curvature Theory for the Double Flier Eight-Bar Linkage
,” Mech. Mach. Theory
0094-114X, 39
, pp. 665
–679
.13.
Birman
, G. S.
, and Nomizu
, K.
, 1984, “Trigonometry in Lorentzian Geometry
,” Am. Math. Monthly
, 91
(9
), pp. 543
–549
.14.
Birman
, G. S.
, and Nomizu
, K.
, 1984, “The Gauss-Bonnet Theorem for 2-Dimensional Space-Times
,” Mich. Math. J.
0026-2285, 31
, pp. 77
–81
.15.
O’Neill
, B.
, 1983, Semi Riemannian Geometry
, Academic Press
, New York
.16.
Akutagawa
, K.
, and Nishikawa
, S.
, 1990, “The Gauss Map and Space-Like Surfaces With Prescribed Mean Curvature in Minkowski 3-Space
,” Tohoku Math. J.
0040-8735, 42
, pp. 68
–82
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.