In this paper, we have introduced one-parameter Lorentzian spherical motion. In addition to that, we have given the relations between the absolute, relative, and sliding velocities of these motions. Furthermore, the relations between fixed and moving pole curves in the Lorentzian spherical motions have also been obtained. At the end of this study, we have expressed the Euler-Savary formula for the one-parameter Lorentzian spherical motions.

1.
Ergin
,
A. A.
, 1989, “
Lorentz Düzleminde Kinematik Geometri
,” Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
2.
Ikawa
,
T.
, 2003, “
Euler-Savary’s Formula on Minkowski Geometry
,”
Balkan J. Geometry App.
,
8
(
2
), pp.
31
36
.
3.
Bottema
,
O.
, 1965, “
Acceleration Axes in Spherical Kinematics
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
150
154
.
4.
Meyer Zur Capellen
,
W.
, and
Dittrich
,
G.
, 1966, “
The Instantaneous Distribution of a Spherically Moving System
,”
J. Mech.
0022-2569,
1
, pp.
23
24
.
5.
Beyer
,
O.
, 1963,
Technische Raumkinematik
,
Springer-Verlag
,
Berlin
, pp.
207
221
.
6.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
, pp.
193
197
.
7.
Muller
,
H. R.
, 1963, “
Kinematik Dersleri
,” (çeviri). Ankara Üniversitesi Fen-Fakültesi yayınları 27.
8.
Chen
,
Y. J.
, and
Ravani
,
B.
, 1987, “
Offsets Surface Generation and Contouring in Computer Aided Design
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
133
142
.
9.
Farouki
,
R. T.
, 1986, “
The Approximation of Non-Degenerate Offset Surface
,”
Comput. Aided Geom. Des.
0167-8396,
3
, pp.
15
43
.
10.
Papaioannou
,
S. G.
, and
Kiritsis
,
D.
, 1985, “
An Application of Bertrand Curves and Surfaces to CAD∕CAM
,”
Comput.-Aided Des.
0010-4485,
17
(
8
), pp.
348
352
.
11.
Pennock
,
G. R.
, and
Sankaranarayanan
,
H.
, 2003, “
Path Curvature of a Geared Seven-Bar Mechanism
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
1345
1361
.
12.
Pennock
,
G. R.
, and
Raje
,
N. N.
, 2004, “
Curvature Theory for the Double Flier Eight-Bar Linkage
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
665
679
.
13.
Birman
,
G. S.
, and
Nomizu
,
K.
, 1984, “
Trigonometry in Lorentzian Geometry
,”
Am. Math. Monthly
,
91
(
9
), pp.
543
549
.
14.
Birman
,
G. S.
, and
Nomizu
,
K.
, 1984, “
The Gauss-Bonnet Theorem for 2-Dimensional Space-Times
,”
Mich. Math. J.
0026-2285,
31
, pp.
77
81
.
15.
O’Neill
,
B.
, 1983,
Semi Riemannian Geometry
,
Academic Press
,
New York
.
16.
Akutagawa
,
K.
, and
Nishikawa
,
S.
, 1990, “
The Gauss Map and Space-Like Surfaces With Prescribed Mean Curvature in Minkowski 3-Space
,”
Tohoku Math. J.
0040-8735,
42
, pp.
68
82
.
You do not currently have access to this content.