Taking the electric–magnetic field inside the interface crack into account, the interface crack problem of dissimilar piezoelectromagneto (PEMO)–elastic anisotropic bimaterials under in-plane deformation is investigated. The conditions to decouple the in-plane and anti-plane deformation is presented for PEMO–elastic biaterials with a symmetry plane. Using the extended Stroh’s dislocation theory of two-dimensional space and the analytic continuition principle of complex analysis, the interface crack problem is turned into a nonhomogeneous Hilbert equation in matrix notation. Four possible eigenvalues as well as four eigenvectors for the fundamental solution to the corresponding homogeneous Hilbert equation are found, so are four modes of singularities for the fields around the interface crack tip. These singularities are shown to have forms of r(12)±iϵ1 and r(12)±iϵ2, in which the bimaterial constants ϵ1 and ϵ2 are proven to be real numbers for practical dissimilar PEMO–elastic bimaterials. Compared with the solution for the interface crack of dissimilar elastic bimaterials without electro–magnetic properties, two new additional singularities are discovered for the interface crack in the PEMO–elastic bimaterial media. The electric–magnetic field inside the crack is solved by employing the “energy method,” which is based on finding the stationary point of the saddle surface of the energy release rate with respect to the electro–magnetic field inside the crack. Closed form expressions for the extended crack tip stress fields and crack open displacements are formulated, so are some other fracture characteristic parameters, such as the extended stress intensity factors and energy release rate (G) for dissimilar PEMO–elastic bimaterial solids. Finally, fundamental results and some conclusions are presented, which could have applications in the failure of piezoelectro/magneto–elastic devices.

1.
Alshits
,
V. I.
,
Darinskii
,
A. N.
, and
Lothe
,
J.
, 1992, “
On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media With Piezoelectric and Piezomagnetic Properties
,”
Wave Motion
0165-2125,
16
, pp.
265
283
.
2.
Benveniste
,
Y.
, 1995, “
Magnetoelectric Effect in Fibrous Composites With Piezoelectric and Piezomagnetic Phases
,”
Phys. Rev. B
0163-1829,
51
(
22
), pp.
16424
16427
.
3.
Chung
,
M. Y.
, and
Ting
,
T. C. T.
, 1995, “
The Green Function for a Piezoelectric Piezomagnetic Anisotropic Elastic Medium With an Elliptic Hole or Rigid Inclusion
,”
Philos. Mag. Lett.
0950-0839,
72
(
6
), pp.
405
410
.
4.
Pan
,
E.
, 2002, “
Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials
,”
J. Math. Phys.
0022-2488,
53
, pp.
815
838
.
5.
Bichurin
,
M. I.
,
Filippov
,
D. A.
,
Petrov
,
V. M.
,
Laletsin
,
V. M.
, and
Paddubnaya
,
N.
, 2003, “
Resonance Magnetoelectric Effect in Layered Magnetostrictive-Piezoelectric Composites
,”
Phys. Rev. B
0163-1829,
68
, pp.
132408
-1–132408-
4
.
6.
Williams
,
M. L.
, 1959, “
The Stress Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
0037-1106,
49
(
2
), pp.
199
204
.
7.
Erdogan
,
F.
, 1963, “
The Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks
,”
J. Appl. Mech.
0021-8936,
85
, pp.
232
236
.
8.
England
,
A. H.
, 1965, “
A Crack Between Dissimilar Media
,”
J. Appl. Mech.
0021-8936,
32
, pp.
400
402
.
9.
Rice
,
J. R.
, and
Sih
,
G. C.
, 1965, “
Plane Problems of Cracks in Dissimilar Media
,”
J. Appl. Mech.
0021-8936,
32
, pp.
418
423
.
10.
Clements
,
D. L.
, 1971, “
A Crack Between Dissimilar Anisotropic Media
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
257
265
.
11.
Willis
,
R. J.
, 1971, “
Fracture Mechanics of Interfacial Cracks
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
353
368
.
12.
Suo
,
Z.
, and
Hutchinson
,
J. W.
, 1990, “
Interface Crack Between Two Elastic Layers
,”
Int. J. Fract.
0376-9429,
43
, pp.
1
18
.
13.
Qu
,
J.
, and
Li
,
Q. Q.
, 1991, “
Interfacial Dislocation and Its Applications to Interface Cracks in Anisotropic Bimaterials
,”
J. Elast.
0374-3535,
26
, pp.
169
195
.
14.
McMeeking
,
R. M.
, 1989, “
Electrostrictive Forces Near Crack Like Flaws
,”
J. Appl. Math. Phys.
,
40
, pp.
615
627
.
15.
Kuo
,
C.-M.
, and
Barnett
,
D. M.
, 1991,
Modern Theory of Anisotropic Elasticity and Applications
(
SIAM Proceeding Series
),
J. J.
Wu
,
T. C. T.
Ting
, and
D. M.
Barnett
eds.,
SIAM
,
Philadelphia, PA
, pp.
33
50
.
16.
Suo
,
Z.
,
Kuo
,
C.-M.
, and
Willis
,
R. J.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
17.
Sih
,
G. C.
, and
Song
,
Z. F.
, 2003, “
Magnetic and Electric Poling Effects Associated With Crack Growth in BaTiO3-CoFe2O4 Composites
,”
Theor. Appl. Fract. Mech.
0167-8442,
39
, pp.
209
227
.
18.
Song
,
Z. F.
, and
Sih
,
G. C.
, 2003, “
Crack Initiation Behavior in Magneto-Electro-Elastic Composite Under In-plane Deformation
,”
Theor. Appl. Fract. Mech.
0167-8442,
39
, pp.
189
207
.
19.
Gao
,
C. F.
,
Kessler
,
H.
, and
Balke
,
H.
, 2003, “
Crack Problems in Magnetoelectroelastic Solids—Part I: Exact Solution of a Crack
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
969
981
.
20.
Gao
,
C. F.
,
Tong
,
P.
, and
Zhang
,
T.-Y.
, 2003, “
Interfacial Crack Problems in Magneto-Electric Solids
,”
Int. J. Eng. Sci.
0020-7225,
41
(
18
), pp.
2105
2121
.
21.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
8
(
3
), pp.
625
646
.
22.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1975, “
Dislocations and Line Charges in Anisotropic Piezoelectric Insulators
,”
Phys. Status Solidi B
0370-1972,
67
, p.
105
.
23.
Li
,
R.
, and
Kardomateas
,
G. A.
, 2006, “
Mode III Interface Crack of Piezo-Electro-Magneto-Elastic Dissimilar Bi-material Composites
,”
J. Appl. Mech.
0021-8936,
73
(
2
), pp.
220
227
.
24.
Lothe
,
J.
, and
Barnett
,
D. M.
, 1976, “
Integral Formalism for Surface Waves in Piezoelectric Crystals. Existence Considerations
,”
J. Appl. Phys.
0021-8979,
47
(
5
), pp.
1799
1807
.
25.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1973, “
Synthesis of Sextic and the Integral Formalism for Dislocations, Greens Functions, and Surface Waves in Anisotropic Elastic Solids
,”
Phys. Norv.
0031-8930,
7
(
1
), pp.
13
19
.
26.
Li
,
R.
, and
Kardomateas
,
G. A.
, 2005, “
A Solution to the Thermoelastic Interface Delamination Branching Behavior for Dissimilar Anisotropic Bi-material Media
,”
Int. J. Solids Struct.
0020-7683, in Press.
27.
Rudin
,
W.
, 1987,
Real and Complex Analysis
,
McGraw-Hill
,
New York
.
28.
Muskhelishvili
,
N. I.
, 1992,
Singular Integral Equations
,
Dover
,
New York
.
You do not currently have access to this content.