Inaccuracies in the modeling assumptions about the distributional characteristics of the monitored signatures have been shown to cause frequent false positives in vehicle monitoring systems for high-risk aerospace applications. To enable the development of robust fault detection methods, this work explores the deterministic as well as variational characteristics of failure signatures. Specifically, we explore the combined impact of crack damage and manufacturing variation on the vibrational characteristics of beams. The transverse vibration and associated eigenfrequencies of the beams are considered. Two different approaches are used to model beam vibrations with and without crack damage. The first approach uses a finite difference approach to enable the inclusion of both cracks and manufacturing variation. The crack model used with both approaches is based on a localized decrease in the Young’s modulus. The second approach uses Myklestad’s method to evaluate the effects of cracks and manufacturing variation. Using both beam models, Monte Carlo simulations are used to explore the impacts of manufacturing variation on damaged and undamaged beams. Derivations are presented for both models. Conclusions are presented on the choice of modeling techniques to define crack damage, and its impact on the monitored signal, followed by conclusions about the distributional characteristics of the monitored signatures when exposed to random manufacturing variations.

1.
Oza
,
N.
,
Tumer
,
I.
,
Tumer
,
K.
, and
Huff
,
E.
, 2003, “
Classification of Aircraft Maneuvers for Fault Detection
,”
Proceedings of the Multiple Classifier Systems (MCS) Workshop
.
2.
Tumer
,
I.
, and
Huff
,
E.
, 2002, “
On the Effects of Production and Maintenance Variations on Machinery Performance
,”
J. Qual. Maint. Eng.
1355-2511,
8
(
3
), pp.
226
238
.
3.
Tumer
,
I.
, and
Huff
,
E.
, 2002, “
Analysis of Triaxial Vibration Data for Health Monitoring of Helicopter Gearboxes
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
1
), pp.
120
128
.
4.
Huff
,
E.
,
Tumer
,
I.
,
Barszcz
,
E.
,
Dzwonczyk
,
M.
, and
McNames
,
J.
, 2002, “
Analysis of Maneuvering Effects on Transmission Vibrations in an AH-1 Cobra Helicopter
,”
J. Am. Helicopter Soc.
0002-8711,
47
(
1
), pp.
42
49
.
5.
McAdams
,
D.
, and
Tumer
,
I.
, 2002, “
Towards Failure Modeling in Complex Dynamic Systems: Impact of Design and Manufacturing Variations
,”
ASME Design for Manufacturing Conference
, Vol. DETC2002∕DFM-34161.
6.
Hampton
,
R.
, and
Nelson
,
H. G.
, 1986, “
Failure Analysis of a Large Wind Compressor Blade
,”
ASTM Spec. Tech. Publ.
0066-0558,
918
, pp.
153
180
.
7.
Ganesan
,
R.
,
Ramu
,
S.
, and
Sankar
,
T.
, 1993, “
Stochastic Finite Element Analysis for High Speed Rotors
,”
ASME J. Vibr. Acoust.
0739-3717,
115
(
3
), pp.
59
64
.
8.
McAdams
,
D. A.
,
Comella
,
D.
, and
Tumer
,
I. Y.
, 2003, “
Developing Variational Vibration Models of Damaged Beams: Toward Intelligent Failure Detection
,”
Proceedings ASME International Mechanical Engineering Congress and Expo
, No. IMECE 2003-42540, ASME, New York.
9.
A. Pouliezos
,
G. S.
, and
Lefas
,
C.
, 1989, “
Fault Detection Using Parameter Estimation
,”
Qual. Reliab. Eng. Int
0748-8017,
5
, pp.
283
290
.
10.
Pusey
,
H. C.
, and
Roemer
,
M. J.
, 1999, “
An Assessment of Turbomachinery Condition Monitoring and Failure Prognosis Technology
,”
Shock Vib. Dig.
0583-1024,
31
(
5
), pp.
365
371
.
11.
Banks
,
J.
,
Reichard
,
K.
, and
Brought
,
M.
, 2002, “
Development of the Asset Health Management System for the Marine Corps Advanced Amphibious Assult Vehicle
,”
Proc. Society Mach. Failure Prevention Technol.
,
56
(
2
), pp.
277
286
.
12.
Roemer
,
M. J.
,
Kacprzynski
,
G. J.
, and
Hess
,
A. J.
, 2002, “
Health Management System Design: Development, Simulation and Cost∕Benefit Optimization
,”
Proceedings of IEEE Conference
, Vol.
6
, March,
IEEE
,
Piscataway, NJ
, pp.
3065
3072
.
13.
Roemer
,
M. J.
,
Kacprzynski
,
G. J.
, and
Hess
,
A. J.
, 2001, “
Extending FMECA-Health Management Design Optimization for Aerospace Applications
,”
Proceedings of IEEE Conference
, Vol.
6
, March,
IEEE
,
Piscataway, NJ
, pp.
3105
3065
.
14.
Ding
,
S. X.
,
Frank
,
P. M.
,
Ding
,
E.
, and
Jeinsch
,
T.
, 2000, “
Fault Detection System Design Base on a New Trade-off Strategy
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, Vol.
4
, December,
IEEE
,
Piscataway, NJ
, pp.
4144
4149
.
15.
Phillips
,
J. N.
,
Levine
,
P.
, and
Tustain
,
S.
, 2000, “
Performance Monitoring of Gas Turbine
,”
CO-MADE’2000 Proceedings of the 13th International Congress on Condition Monitoring and Diagnostic Engineering
, Houston, December 3–8, pp.
527
536
.
16.
Lifson
,
A.
,
Quentin
,
G.
,
Smalley
,
A.
, and
Knauf
,
C.
, 1989, “
Assessment of Gas Turbine Vibration Monitoring
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
111
(
2
), pp.
257
263
.
17.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
, 1998, “
Gas Turbine Blade Failure—Causes, Avoidance, and Troubleshooting
,”
Turbomachinery Symposium 1998: Proceedings of the Twenty-Seventh Turbomachinery Symposium
, Houston, September 20–24, pp.
129
179
.
18.
Kumar
,
A.
,
Kumar
,
V.
, and
Hazara
,
U.
, 1996, “
Effective Failure Analysis of Gas Turbine—A Need of Improved Monitoring System (A Case Study)
,”
COMADE’96 Proceedings of the Diagnostic Engineering Management Conference
, Sheffield, UK, June pp.
905
915
.
19.
Al-Bedoor
,
B. O.
, 2002, “
Blade Vibration Measurement in Turbo-Machiner: Current Status
,”
Shock Vib. Dig.
0583-1024,
34
(
6
), pp.
455
461
.
20.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
0583-1024,
30
(
2
), pp.
91
105
.
21.
Friswell
,
M. I.
, and
Penny
,
J. E. T.
, 2002, “
Crack Modeling for Structural Health Monitoring
,”
Struct. Health Monit.
1475-9217,
1
(
2
), pp.
139
148
.
22.
Hu
,
J.
, and
Liang
,
Y.
, 1993, “
An Integrated Approach to Detection of Cracks Using Vibration Characteristics
,”
J. Franklin Inst.
0016-0032,
330
(
5
), pp.
841
853
.
23.
Gudmundon
,
P.
, 1982, “
Eigenfrequency Changes of Structures Due to Cracks, Notches or Other Geometrical Changes
,”
J. Mech. Phys. Solids
0022-5096,
30
(
5
), pp.
339
353
.
24.
Wetland
,
D.
, 1972, “
Aenderung der Biegeeigenfrequenzen einer idealisierten Schaufel durch Risse
,” Ph.D. thesis, University of Karlsruhe.
25.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 1998, “
A Continuous Cracked Beam Vibration Theory
,”
J. Sound Vib.
0022-460X,
215
(
1
), pp.
17
34
.
26.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
, 1998, “
Vibration of a Cracked Cantilever Beam
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
120
(
2
), pp.
742
746
.
27.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 1998, “
Longitudinal Vibration of a Continuous Cracked Bar
,”
Eng. Fract. Mech.
0013-7944,
61
(
5–6
), pp.
593
606
.
28.
Chondros
,
T. G.
, 2001, “
The Continuous Crack Flexibility Model for Crack Identification
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
(
10
), pp.
643
650
.
29.
Mengcheng
,
C.
, and
Renji
,
T.
, 1997, “
An Approximate Method of Response Analysis of Vibrations for Cracked Beams
,”
Appl. Math. Mech.
0253-4827,
18
(
3
), pp.
221
228
.
30.
Yokoyama
,
T.
, and
Chen
,
M.-C.
, 1998, “
Vibration Analysis of Edge-Cracked Beams Using a Line-Spring Model
,”
Eng. Fract. Mech.
0013-7944,
59
(
3
), pp.
403
409
.
31.
Chaudhari
,
T. D.
, and
Maiti
,
S. K.
, 1999, “
Modelling of Transverse Vibration of Beam of Linearly Variable Depth With Edge Crack
,”
Eng. Fract. Mech.
0013-7944,
63
(
4
), pp.
425
445
.
32.
Zheng
,
D. Y.
, and
Fan
,
S. C.
, 2001, “
Natural Frequencies of a Non-Uniform Beam With Multiple Cracks Via Modified Fourier Series
,”
J. Sound Vib.
0022-460X,
242
(
5
), pp.
701
717
.
33.
Ju
,
F. D.
, and
Mimovich
,
M. E.
, 1988, “
Experimental Diagnosis of Fracture Damage in Structures by the Modal Frequency Method
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
110
(
4
), pp.
456
463
.
34.
Kuang
,
J. H.
, and
Huang
,
B. W.
, 1999, “
The Effect of Blade Crack on Mode Localization in Rotating Bladed Disks
,”
J. Sound Vib.
0022-460X,
227
(
1
), pp.
85
103
.
35.
Chondross
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
, 2001, “
Vibration of a Beam With a Breathing Crack
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
57
67
.
36.
Bovsunovsky
,
A. P.
, and
Matveev
,
V. V.
, 2000, “
Analytical Approach to the Determination of Dynamic Characteristics of a Beam With a Closing Crack
,”
J. Sound Vib.
0022-460X,
235
(
3
), pp.
415
434
.
37.
Surace
,
N. P. C.
, and
Ruotolo
,
R.
, 2000, “
Evaluation of the Non-Linear Dynamic Response to Harmonic Exitation of a Beam With Several Breathing Cracks
,”
J. Sound Vib.
0022-460X,
235
(
5
), pp.
749
762
.
38.
Kachanov
,
L.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff Publishers
,
Dordrecht, The Netherlands
.
39.
Lapidus
,
L.
, and
Pinder
,
G.
, 1982,
Numerical Solution of Partial Differential Equations in Science and Engineering
,
John Wiley and Sons
,
New York
.
40.
Bilbao
,
S.
, 2002, “
Wave and Scattering Methods for the Numerical Integration of Partial Differential Equations
,” Ph.D. thesis, Stanford University.
41.
Walsh
,
R.
, 1999,
McGraw-Hill Machining and Metal Working Handbook
,
McGraw-Hill
,
New York
.
42.
Bowker
,
A. H.
, and
Lieberman
,
G. J.
, 1959,
Engineering Statistics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Dipasquale
,
E.
,
Ju
,
J.
,
Askar
,
A.
, and
Cakmak
,
A.
, 1990, “
Relation Between Global Damage Indices and Local Stiffness Degradation
,”
J. Struct. Eng.
0733-9445,
116
(
5
) [May.], pp.
1440
1456
.
44.
Myklestad
,
N. O.
, 1944, “
A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams
,”
J. Aeronaut. Sci.
0095-9812,
12
, pp.
153
162
.
45.
Thomson
,
W. T.
, 1972,
Theory of Vibrations with Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
46.
Pestel
,
E. C.
, and
Leckie
,
F. A.
, 1963,
Matrix Methods in Elastomechanics
,
McGraw-Hill
,
New York
.
47.
Meirovitch
,
L.
, 2001,
Fundamentals of Vibrations
,
McGraw Hill
,
New York
.
48.
Myklestad
,
N.
, 1944,
Vibration Analysis
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.