This paper deals with the derivation of exact solutions for the static analysis of functionally graded (FG) plates integrated with a layer of piezoelectric fiber reinforced composite (PFRC) material. The layer of the PFRC material acts as the distributed actuator of the FG plates. The Young’s modulus of the FG plate is assumed to vary exponentially along the thickness of the plate while the Poisson’s ratio is assumed to be constant over the domain of the plate. The numerical values of the exact solutions are presented for both thick and thin smart FG plates and indicate that the activated PFRC layer potentially counteracts the deformations of the FG plates due to mechanical load. The through-thickness behavior of the plates revealed that the coupling of bending and extension takes place in the FG plates even if the PFRC layer is not subjected to the applied voltage. The solutions also revealed that the activated PFRC layer is more effective in controlling the deformations of the FG plates when the layer is attached to the surface of the FG plate with minimum stiffness than when it is attached to the surface of the same with maximum stiffness. The solutions of this benchmark problem may be useful for verifying the other approximate and numerical models of the smart functionally graded plates for which exact solutions cannot be derived.

1.
Koizumi
,
M.
, 1993, “
Concept of FGM
,”
Ceram. Trans.
1042-1122,
34
, pp.
3
10
.
2.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
Maney
,
London
.
3.
Noda
,
N.
, and
Jin
,
Z. H.
, 1993, “
Thermal Stress Intensity Factors for a Crack in a Strip of a Functionally Gradient Material
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
1039
1056
.
4.
Teymur
,
M.
,
Chitkara
,
N. R.
,
Yohngjo
,
K.
,
Aboudi
,
J.
,
Pindera
,
M. J.
, and
Arnold
,
S. M.
, 1996, “
Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions
,”
33
, pp.
931
966
.
5.
Feldman
,
E.
, and
Aboudi
,
J.
, 1997, “
Buckling Analysis of Functionally Graded Plates Subjected to Uniaxial Loading
,”
Compos. Struct.
0263-8223,
38
, pp.
29
36
.
6.
Gu
,
P.
, and
Asaro
,
J.
, 1997, “
Crack in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
1
17
.
7.
Mian
,
A. M.
, and
Spencer
,
A. J. M.
, 1998, “
Exact Solutions for Functionally Graded and Laminated Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
2283
2295
.
8.
Praveen
,
G. N.
, and
Reddy
,
J. N.
, 1998, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic Metal Plates
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4457
4476
.
9.
Lee
,
P. C. Y.
, and
Yu
,
J. D.
, 1998, “
Governing Equations for a Piezoelectric Plate With Graded Properties Across the Thickness
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
45
, pp.
236
250
.
10.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
309
324
.
11.
Aboudi
,
J.
,
Pindera
,
M. J.
, and
Arnold
,
S. M.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
1359-8368,
30
, pp.
777
832
.
12.
Wang
,
B. L.
,
Han
,
J. C.
, and
Du
,
S. Y.
, 2000, “
Crack Problems for Functionally Graded Materials Under Transient Thermal Loading
,”
J. Polym. Sci. A
0449-2951,
23
, pp.
143
168
.
13.
Yang
,
Y. Y.
, 2000, “
Time-Dependent Stress Analysis in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7593
7608
.
14.
Yang
,
J.
, and
Shen
,
H. S.
, 2001, “
Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,”
Compos. Struct.
0263-8223,
54
, pp.
497
508
.
15.
Sankar
,
B. V.
, 2001, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
689
696
.
16.
Batra
,
R. C.
, and
Vel
,
S. S.
, 2001, “
Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates
,”
AIAA J.
0001-1452,
40
, pp.
1421
1433
.
17.
Woo
,
J.
, and
Meguid
,
S. A.
, 2001, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7409
7421
.
18.
Shen
,
H. S.
, 2002, “
Nonlinear Bending Response of Functionally Graded Plates Subjected to Transverse Loads and in Thermal Environments
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
561
584
.
19.
Vel
,
S. S.
, and
Batra
,
R. C.
, 2003, “
Three-Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7181
7196
.
20.
Zhong
,
Z.
, and
Shang
,
E. T.
, 2003, “
Three-Dimensional Exact Analysis of a Simply Supported Functionally Gradient Piezoelectric Plate
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
5335
5352
.
21.
Najafizadeh
,
M. M.
, and
Hedayati
,
B.
, 2004, “
Refined Theory for Thermoelastic Stability of Functionally Graded Circular Plates
,”
J. Therm. Stresses
0149-5739,
27
, pp.
857
880
.
22.
Bailey
,
T.
, and
Hubbard
,
J. E.
, 1985, “
Distributed Piezoelectric Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid. Control Dyn.
0731-5090,
8
, pp.
605
611
.
23.
Miller
,
S. E.
, and
Hubbard
,
J. E.
, 1987, “
Observability of a Bernoulli-Euler Beam Using, PVF2, as a Distributed Sensor
,” MIT Draper Laboratory Report, July 1, 1987.
24.
Crawley
,
E. F.
, and
Luis
,
J. D.
, 1987, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
0001-1452,
25
, pp.
1373
1385
.
25.
Baz
,
A.
, and
Poh
,
S.
, 1988, “
Performance of an Active Control System With Piezoelectric Actuators
,”
J. Sound Vib.
0022-460X,
126
, pp.
327
343
.
26.
Ray
,
M. C.
,
Bhattacharyya
,
R.
, and
Samanta
,
B.
, 1993, “
Exact Solutions for Static Analysis of Intelligent Structures
,”
AIAA J.
0001-1452,
31
, pp.
1684
1691
.
27.
Clark
,
R. L.
,
Fleming
,
M. R.
, and
Fuller
,
C. R.
, 1997, “
Piezoelectric Actuators for Distributed Excitation of Thin Plates; A Comparison Between Theory and Experiment
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
332
339
.
28.
Baz
,
A.
, and
Poh
,
S.
, 1996, “
Optimal Vibration Control With Modal Positive Position Feedback
,”
Opt. Control Appl. Methods
0143-2087,
17
, pp.
141
149
.
29.
Dong
,
S.
, and
Tong
,
L.
, 2001, “
Vibration Control of Plates Using Discretely Distributed Piezoelectric Quasi-Modal Actuators/Sensors
,”
AIAA J.
0001-1452,
39
, pp.
1766
1772
.
30.
Ray
,
M. C.
, 2003, “
Optimal Control of Laminated Shells With Piezoelectric Sensor and Actuator Layers
,”
AIAA J.
0001-1452,
41
, pp.
1151
1157
.
31.
Ray
,
M. C.
, and
Reddy
,
J. N.
, 2004, “
Optimal Control of Thin Circular Cylindrical Shells Using Active Constrained Layer Damping Treatment, Smart Materials and Structures
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
64
72
.
32.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2000, “
Three-Dimensional Transient Thermoelasticity in Functionally Graded Rectangular Plate Bonded to a Piezoelectric Plate
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4377
4401
.
33.
Ootao
,
Y.
, and
Tanigawa
,
Y.
, 2001, “
Control of the Transient Thermoelastic Displacement of a Functionally Graded Rectangular Plate Bonded to a Piezoelectric Plate due to Nonuniform Heating
,”
Acta Mech.
0001-5970,
148
, pp.
17
33
.
34.
Reddy
,
J. N.
, and
Cheng
,
Z. Q.
, 2001, “
Three-Dimensional Solutions of Smart Functionally Graded Plates
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
234
241
.
35.
Wang
,
B. L.
, and
Noda
,
N.
, 2001, “
Design of a Smart Functionally Graded Thermopiezoelectric Composite Structure
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
189
193
.
36.
Wang
,
B. L.
, and
Noda
,
N.
, 2001, “
Thermally Induced Fracture of a Smart Functionally Graded Composite Structure
,”
Theor. Appl. Fract. Mech.
0167-8442,
35
, pp.
93
109
.
37.
Yang
,
J.
,
Kitipornchi
,
S.
, and
Liew
,
K. M.
, 2003, “
Large Amplitude Vibration of Thermoelectro-Mechanically Stressed FGM Laminated Plates
,”
192
, pp.
3861
3885
.
38.
Mallik
,
N.
, and
Ray
,
M. C.
, 2003, “
Effective Coefficients of Piezoelectric Fiber Reinforced Composites
,”
AIAA J.
0001-1452,
41
, pp.
704
710
.
39.
Pagano
,
N. J.
, 1970, “
Exact Solution for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
0021-9983,
4
, pp.
20
34
.
40.
Erdogan
,
F.
, 1985, “
The Crack Problem for Bonded Nonhomogeneous Materials Under Antiplane Shear Loading
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
823
828
.
41.
Delale
,
F.
, and
Erdogan
,
F.
, 1988, “
On the Mechanical Modeling of the Interfacial Region in Bonded Half Planes
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
317
324
.
42.
Heyliger
,
P.
, 1997, “
Exact Solutions for Simply-Supported Laminated Piezoelectric Plates
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
299
306
.
43.
Tan
,
P.
, and
Tong
,
L.
, 2001, “
Micro-Electromechanics Models for Piezoelectric Fiber Reinforced Composite Materials
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
759
769
.
You do not currently have access to this content.