A simplified version of a newly developed anisotropic plasticity theory is presented to describe the anisotropic flow behavior of orthotropic polycrystalline sheet metals under uniaxial tension. The theory is formulated in terms of the intrinsic variables of principal stresses and a loading orientation angle and its uniaxial tension version requires a non-quadratic stress exponent and up to five anisotropic material functions of the loading orientation angle to specify a flow condition, a flow rule for plastic strain rates, a flow rule for macroscopic plastic spin, and an evolution law of isotropic hardening. In this investigation, the proper analytical form and the associated parameter identification of the anisotropic material functions defining the flow rule of macroscopic plastic spin are discussed for sheet metals with persistent but rotated orthotropic symmetry axes under off-axis uniaxial tension. It is shown that the proposed flow rule of macroscopic plastic spin can successfully model the experimental data on the rotation of orthotropic symmetry axes in the three sheet metals reported, respectively, by Boehler et al. (Boehler and Koss, 1991, Advances in Continuum Mechanics, O. Bruller et al., eds., Springer, Heidelberg, pp. 143–158; Losilla, Boehler, and Zheng, 2000, Acta Mech. 144, pp. 169–183); Kim and Yin (1997, J. Mech. Phys. Solids 45, pp. 841–851); and Bunge and Nielsen (1997 Int. J. Plasticity 13, pp. 435–446).

1.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, UK.
2.
Prager
,
W.
,
1955
, “
The Theory of Plasticity: A Survey of Recent Achievements
,”
Proc. Inst. Electr. Eng.
,
169
, pp.
41
57
.
3.
Eisenberg
,
M. A.
, and
Yen
,
C. F.
,
1981
, “
A Theory of Multiaxial Anisotropic Viscoplasticity
,”
ASME J. Appl. Mech.
,
48
, pp.
276
284
.
4.
McDowell
,
D. L.
,
1987
, “
An Evaluation of Recent Developments in Hardening and Flow Rules for Rate-Independent, Non-Proportional Cyclic Plasticity
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
323
334
.
5.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
,
193
, pp.
281
297
.
6.
Hill
,
R.
,
1979
, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc.
,
85
, pp.
179
191
.
7.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
,
1993
, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
,
41
, pp.
1859
1886
.
8.
Wu
,
H. C.
,
Hong
,
H. K.
, and
Shiao
,
Y. P.
,
1999
, “
Anisotropic Plasticity With Application to Sheet Metals
,”
Int. J. Mech. Sci.
,
41
, pp.
703
724
.
9.
Dawson
,
P.
, and
Marin
,
E. B.
,
1998
, “
Computational Mechanics for Metal Deformation Process Using Polycrystal Plasticity
,”
Adv. Appl. Mech.
,
34
, pp.
77
169
.
10.
Boehler, J. P., and Koss, S., 1991, “Evolution of Anisotropy in Sheet-Steels Subjected to Off-Axes Large Deformation,” Advances in Continuum Mechanics, O. Bruller, V. Mannl, and J. Najar, eds., Springer, Berlin, pp. 143–158.
11.
Kim
,
K. H.
, and
Yin
,
J. J.
,
1997
, “
Evolution of Anisotropy Under Plane Stress
,”
J. Mech. Phys. Solids
,
45
(
5
), pp.
841
851
.
12.
Bunge
,
H. J.
, and
Nielsen
,
I.
,
1997
, “
Experimental Determination of Plastic Spin in Polycrystalline Materials
,”
Int. J. Plast.
,
13
(
5
), pp.
435
446
.
13.
Mandel, J., 1974, “Thermodynamics and Plasticity,” Foundations of Continuum Thermodynamics. J. J. Delgado et al., eds., MacMillan, New York.
14.
Loret
,
B.
,
1983
, “
On the Effects of Plastic Rotation in the Finite Deformation of Anisotropic Elastoplastic Materials
,”
Mech. Mater.
,
2
, pp.
287
304
.
15.
Dafalias
,
Y. F.
,
1984
, “
The Plastic Spin Concept and a Simple Illustration of Its Role in Finite Plastic Transformations
,”
Mech. Mater.
,
3
, pp.
223
233
.
16.
Onat, E. T., 1984, “Shear Flow of Kinematically Hardening Rigid-Plastic Materials,” Mechanics of Material Behavior, G. J. Dvorak and R. T. Shield, eds., Elsevier, New York, pp. 311–324.
17.
Dafalias
,
Y. F.
,
1985
, “
The Plastic Spin
,”
ASME J. Appl. Mech.
,
52
, pp.
865
871
.
18.
Dafalias
,
Y. F.
, and
Rashid
,
M. M.
,
1989
, “
The Effect of Plastic Spin on Anisotropic Material Behavior
,”
Int. J. Plast.
,
5
, pp.
227
246
.
19.
Dafalias
,
Y. F.
, and
Aifantis
,
E. C.
,
1990
, “
On the Microscopic Origin of the Plastic Spin
,”
Acta Mech.
,
82
, pp.
31
48
.
20.
Aravas
,
E. C.
, and
Aifantis
,
E. C.
,
1991
, “
On the Geometry of Slip and Spin in Finite Plastic Deformation
,”
Int. J. Plast.
,
7
, pp.
141
160
.
21.
van der Giessen
,
E.
,
1992
, “
A 2D Analytical Multiple Slip Model for Continuum Texture Development and Plastic Spin
,”
Mech. Mater.
,
13
, pp.
93
115
.
22.
Prantil
,
V. C.
,
Jenkins
,
J. T.
, and
Dawson
,
P. R.
,
1993
, “
An Analysis of Texture and Plastic Spin for Planar Polycrystals
,”
J. Mech. Phys. Solids
,
41
(
8
), pp.
1357
1382
.
23.
Dafalias
,
Y. F.
,
1993
, “
On Multiple Spins and Texture Development. Case Study: Kinematic and Orthotropic Hardening
,”
Acta Mech.
,
100
, pp.
171
194
.
24.
Lubarda
,
V. A.
, and
Shih
,
C. F.
,
1994
, “
Plastic Spin and Related Issues in Phenomenological Plasticity
,”
ASME J. Appl. Mech.
,
61
, pp.
524
529
.
25.
Schieck
,
B.
, and
Stumpf
,
H.
,
1995
, “
The Appropriate Corotational Rate, Exact Formula for the Plastic Spin and Constitutive Model for Finite Elastoplasticity
,”
Int. J. Solids Struct.
,
32
(
24
), pp.
3643
3667
.
26.
Kuroda
,
M.
,
1997
, “
Interpretation of the Behavior of Metals Under Large Plastic Shear Deformations: A Macroscopic Approach
,”
Int. J. Plast.
,
13
, pp.
359
383
.
27.
Levitas
,
V. I.
,
1998
, “
A New Look at the Problem of Plastic Spin Based on Stability Analysis
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
557
590
.
28.
Dafalias
,
Y. F.
,
2000
, “
Orientational Evolution of Plastic Orthotropy in Sheet Metals
,”
J. Mech. Phys. Solids
,
48
, pp.
2231
2255
.
29.
Sidoroff
,
F.
, and
Dogui
,
A.
,
2001
, “
Some Issues About Anisotropic Elastic-Plastic Models at Finite Strain
,”
Int. J. Solids Struct.
,
38
, pp.
9569
9578
.
30.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2001
, “
Plastic Spin Associated With a Non-Normality Theory of Plasticity
,”
Eur. J. Mech. A/Solids
,
20
, pp.
893
905
.
31.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformations at Finite Strains
,”
ASME J. Appl. Mech.
,
36
, pp.
1
6
.
32.
Rice
,
J. R.
,
1970
, “
On the Structure of Stress-Strain Relations for Time-Dependent Plastic Deformation in Metals
,”
ASME J. Appl. Mech.
,
37
, pp.
728
737
.
33.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
, pp.
433
455
.
34.
Rogers, T. G., 1990, “Yield Criteria, Flow Rules, and Hardening in Anisotropic Plasticity,” Yielding, Damage, and Failure of Anisotropic Solids, J. P. Boehler, ed., Mechanical Engineering Publications Limited, London, pp. 53–79.
35.
Tong
,
W.
,
2002
, “
A Planar Plastic Flow Theory of Orthotropic Sheets and the Experimental Procedure for Its Evaluations
,” Proc. R. Soc. London, Ser. A, submitted for publication.
36.
Tong
,
W.
,
2002
, “
A Plane Stress Anisotropic Plastic Flow Theory for Orthotropic Aluminum Sheet Metals
,” Int. J. Plast., accepted for publication.
37.
Tong
,
W.
,
2003
, “
A Planar Plastic Flow Theory for Monoclinic Sheet Metals
,” Int. J. Mech. Sci., submitted for publication.
38.
Tong, W., Zhang, N., and Xie, C., 2003, “Modeling of the Anisotropic Plastic Flows of Automotive Sheet Metals,” Aluminum 2003, S. K. Das, ed., The Minerals, Metals & Materials Society, to appear.
39.
Tong
,
W.
,
Xie
,
C.
, and
Zhang
,
N.
,
2003
, “
Micromechanical and Macroscopic Modeling of Anisotropic Plastic Flows of Textured Polycrystalline Sheets
,” Modell. Simul. Mater. Sci. Eng., submitted for publication.
40.
Tong
,
W.
,
Xie
,
C.
, and
Zhang
,
N.
,
2003
, “
Modeling the Anisotropic Plastic Flow of Textured Polycrystalline Sheets Using the Generalized Hill’s 1979 Non-Quadratic Flow Potential
,” Int. J. Plast., submitted for publication.
41.
Hill
,
R.
,
1980
, “
Basic Stress Analysis of Hyperbolic Regimes in Plastic Media
,”
Math. Proc. Cambridge Philos. Soc.
,
88
, pp.
359
369
.
42.
Hill
,
R.
,
1990
, “
Constitutive Modeling of Orthotropic Plasticity in Sheet Metals
,”
J. Mech. Phys. Solids
,
38
, pp.
405
417
.
43.
Truong Qui
,
H. P.
, and
Lippmann
,
H.
,
2001
, “
Plastic Spin and Evolution of an Anisotropic Yield Condition
,”
Int. J. Mech. Sci.
,
43
, pp.
1969
1983
.
44.
Truong Qui
,
H. P.
, and
Lippmann
,
H.
,
2001
, “
On the Impact of Local Rotation on the Evolution of an Anisotropic Plastic Yield Condition
,”
J. Mech. Phys. Solids
,
49
, pp.
2577
2591
.
45.
Losilla
,
G.
,
Boehler
,
J. P.
, and
Zheng
,
Q. S.
,
2000
, “
A Generally Anisotropic Hardening Model for Big Offset-Strain Yield Stresses
,”
Acta Mech.
,
144
, pp.
169
183
.
46.
McDowell, D. L., Miller, M. P., and Bammann, D. J., 1993, “Some Additional Considerations for Coupling of Material and Geometric Nonlinearities for Polycrystalline Metals,” Large Plastic Deformations: Fundamental Aspects and Applications to Metal Forming (MECAMAT’91), C. Teodosiu, J. L. Raphanel, and F. Sidoroff, eds., Balkema, Rotterdam, pp. 319–327.
47.
Stoughton
,
T. B.
,
2002
, “
A Non-Associated Flow Rule for Sheet Metal Forming
,”
Int. J. Plast.
,
18
, pp.
687
714
.
48.
Dafalias
,
Y. F.
,
1998
, “
The Plastic Spin: Necessity or Redundancy?
Int. J. Plast.
,
14
, pp.
909
931
.
49.
Asaro
,
R. J.
,
1983
, “
Micromechanics of Crystals and Polycrystals
,”
Advances in Mechanics
,
23
, p.
1
1
.
50.
Bassani
,
J. L.
,
1994
, “
Plastic Flow of Crystals
,”
Advances in Appl. Mech.
,
30
, pp.
191
258
.
51.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
,
348
, pp.
101
127
.
52.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Texture Development and Strain Hardening in Rate-Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
53.
Gambin
,
W.
,
1992
, “
Refined Analysis of Elastic-Plastic Crystals
,”
Int. J. Solids Struct.
,
29
(
16
), pp.
2013
2021
.
54.
Darrieulat
,
M.
, and
Piot
,
D.
,
1996
, “
A Method of Generating Analytical Yield Surfaces of Polycrystalline Materials
,”
Int. J. Plast.
,
12
(
5
), pp.
575
610
.
You do not currently have access to this content.