It is shown that the elastic field due to nonuniform temperature or a coherently misfitting inclusion in a semi-infinite region can be derived simply from the corresponding field in an infinite region. This follows from the work of Mindlin and Cheng [J. Appl. Phys. 21, 931 (1950)] but it is not necessary to calculate the thermoelastic potential itself. In particular, the displacement of the free surface is the same as that of the equivalent plane in an infinite solid, increased by a factor of 4(1−ν). The change in volume associated with the distortion of the surface is reduced by a factor of 2(1+ν)/3 from the free expansion of the inclusion. A rectangular inclusion is used to illustrate the theory.

1.
Boley, B. A., and Weiner, J. H., 1997, Theory of Thermal Stresses, Dover, Mineola, NY.
2.
Nowacki, W., 1986, Thermoelasticity, Pergamon, Oxford, UK, 2nd edition.
3.
Hu
,
S. M.
1989
, “
Stress From a Parallelepipedic Thermal Inclusion in a Halfspace
,”
J. Appl. Phys.
,
66
, pp.
2741
2743
.
4.
Hu
,
S. M.
1990
, “
Stress From Isolation Trenches in Silicon Substrates
,”
J. Appl. Phys.
,
67
, pp.
1092
1101
.
5.
Freund
,
L. B.
2000
, “
The Mechanics of Electronic Materials
,”
Int. J. Solids Struct.
,
37
, pp.
185
196
.
6.
Jain
,
S. C.
,
Maes
,
H. E.
,
Pinardi
,
K.
, and
De Wolf
,
I.
1996
, “
Stresses and Strains in Lattice-Mismatched Stripes, Quantum Wires, Quantum Dots, and Substrates in Si Technology
,”
J. Appl. Phys.
,
79
, pp.
8145
8165
.
7.
Glas
,
F.
1987
, “
Elastic State of the Thermodynamic Properties of Inhomogeneous Epitaxial Layers: Application to Immiscible III-V Alloys
,”
J. Appl. Phys.
,
62
, pp.
3201
3208
.
8.
Glas
,
F.
1991
, “
Coherent Stress Relaxation in a Half Space: Modulated Layers, Inclusions, Steps, and a General Solution
,”
J. Appl. Phys.
,
70
, pp.
3556
3571
.
9.
Pinnington
,
T.
,
Sanderson
,
A.
,
Tiedje
,
T.
,
Pearsall
,
T. P.
,
Kasper
,
E.
, and
Presting
,
H.
1992
, “
Ambient Pressure Scanning Tunneling Microscope Imaging of Hydrogen-Passivated Si/Ge Multilayers
,”
Thin Solid Films
,
222
, pp.
259
264
.
10.
Chen
,
H.
,
Feenstra
,
R. M.
,
Piva
,
P. G.
,
Goldberg
,
R. D.
,
Mitchell
,
I. V.
,
Aers
,
G. C.
,
Poole
,
P. J.
, and
Charbonneau
,
S.
1999
, “
Enhanced Group-V Intermixing in InGaAs/InP Quantum Wells Studied by Cross-Sectional Scanning Tunneling Microscopy
,”
Appl. Phys. Lett.
,
75
, pp.
79
81
.
11.
Gosling
,
T. J.
, and
Willis
,
J. R.
1995
, “
Mechanical Stability and Electronic Properties of Buried Strained Quantum Well Arrays
,”
J. Appl. Phys.
,
77
, pp.
5601
5610
.
12.
Faux
,
D. A.
,
Downes
,
J. R.
, and
O’Reilly
,
E. P.
1996
, “
A Simple Method for Calculating Strain Distributions in Quantum-Wire Structures
,”
J. Appl. Phys.
,
80
, pp.
2515
2517
.
13.
Faux
,
D. A.
,
Downes
,
J. R.
, and
O’Reilly
,
E. P.
1997
, “
Analytic Solutions for Strain Distributions in Quantum-Wire Structures
,”
J. Appl. Phys.
,
82
, pp.
3754
3762
.
14.
Grundmann
,
M.
,
Stier
,
O.
, and
Bimberg
,
D.
1995
, “
InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure
,”
Phys. Rev. B
,
52
, pp.
11969
11981
.
15.
Downes
,
J. R.
,
Faux
,
D. A.
, and
O’Reilly
,
E. P.
1997
, “
A Simple Method for Calculating Strain Distributions in Quantum Dot Structures
,”
J. Appl. Phys.
,
81
, pp.
6700
6702
.
16.
Pryor
,
C.
,
Kim
,
J.
,
Wang
,
L. W.
,
Williamson
,
A.
, and
Zunger
,
A.
1998
, “
Comparison of Two Methods for Describing the Strain Profiles in Quantum Dots
,”
J. Appl. Phys.
,
83
, pp.
2548
2554
.
17.
Davies
,
J. H.
1998
, “
Elastic and Piezoelectric Fields Around a Buried Quantum Dot: A Simple Picture
,”
J. Appl. Phys.
,
84
, pp.
1358
1365
.
18.
Davies
,
J. H.
1999
, “
Quantum Dots Induced by Strain
,”
Appl. Phys. Lett.
,
75
, pp.
4142
4144
.
19.
Legrand
,
B.
,
Grandidier
,
B.
,
Nuys
,
J. P.
,
Stie´venard
,
D.
,
Ge´rard
,
J. M.
, and
Thierry-Mieg
,
V.
1998
, “
Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy of Self-Assembled InAs Quantum Dots
,”
Appl. Phys. Lett.
,
73
, pp.
96
98
.
20.
Chiu
,
Y. P.
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
, pp.
587
590
.
21.
Chiu
,
Y. P.
1978
, “
On the Stress Field in Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
, pp.
302
306
.
22.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
1950
, “
Nuclei of Strain in the Semi-Infinite Solid
,”
J. Appl. Phys.
,
21
, pp.
926
930
.
23.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
1950
, “
Thermoelastic Stress in the Semi-Infinite Solid
,”
J. Appl. Phys.
,
21
, pp.
931
933
.
24.
Sen
,
B.
1951
, “
Note on the Stresses Produced by a Nuclei of Thermoelastic Strain in a Semi-Infinite Elastic Solid
,”
Q. Appl. Math.
,
8
, pp.
365
369
.
25.
Goodier
,
J. N.
1937
, “
On the Integration of the Thermo-Elastic Equations
,”
Philos. Mag.
,
23
, pp.
1017
1032
.
26.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York, 3rd edition.
27.
Westergaard, H. M., 1952, Theory of Elasticity and Plasticity, Harvard University Press, Cambridge, MA.
28.
Barber
,
J. R.
1987
, “
Thermoelastic Distortion of the Half-Space
,”
J. Therm. Stresses
,
10
, pp.
221
228
.
29.
Barber, J. R., 2002, Elasticity, 2nd Ed., Kluwer, Dordrecht, The Netherlands.
30.
Nowacki
,
W.
,
1954
, “
Thermal Stresses in Anisotropic Bodies (I)
,”
Arch. Mech. Stos. (Arch. Mech.)
6
, pp.
481
492
.
31.
Hieke
,
M.
1955
,
Z. Angew. Math. Mech.
,
35
, pp.
285
294
.
32.
Garcia Blanco
,
S.
,
Glidle
,
A.
,
Davies
,
J. H.
,
Aitchison
,
J. S.
, and
Cooper
,
J. M.
2001
, “
Electron Beam Induced Densification of Ge-Doped Flame Hydrolysis Silica for Waveguide Fabrication
,”
Appl. Phys. Lett.
,
79
, pp.
2889
2891
.
33.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
34.
Davies
,
J. H.
,
Bruls
,
D. M.
,
Vugs
,
J. W. A. M.
, and
Koenraad
,
P. M.
2002
, “
Relaxation of a Strained Quantum Well at a Cleaved Surface
,”
J. Appl. Phys.
,
91
, pp.
4171
4176
.
35.
Myklestad
,
N. O.
1942
, “
Two Problems of Thermal Stress in the Infinite Solid
,”
ASME J. Appl. Mech.
,
9
, pp.
A136–A143
A136–A143
.
36.
Faivre
,
G.
1964
, “
De´formations de Cohe´rence d’un Pre´cipite´ Quadratique
,”
Phys. Status Solidi
,
35
, pp.
249
259
.
37.
Seo
,
K.
, and
Mura
,
T.
1979
, “
The Elastic Field in a Half Space due to Ellipsoidal Inclusions With Uniform Dilational Eigenstrains
,”
ASME J. Appl. Mech.
,
46
, pp.
568
572
.
38.
Glas
,
F.
2001
, “
Elastic Relaxation of Truncated Pyramidal Quantum Dots and Quantum Wires in a Half Space: An Analytical Calculation
,”
J. Appl. Phys.
,
90
, pp.
3232
3241
.
39.
Pearson
,
G. S.
, and
Faux
,
D. A.
2000
, “
Analytical Solutions for Strain in Pyramidal Quantum Dots
,”
J. Appl. Phys.
,
88
, pp.
730
736
.
40.
Lita
,
B.
,
Goldman
,
R. S.
,
Phillips
,
J. D.
, and
Battacharya
,
P. K.
1999
, “
Interdiffusion and Surface Segregation and Stacked, Self-Assembled InAs/GaAs Quantum Dots
,”
Appl. Phys. Lett.
,
75
, pp.
2797
2799
.
You do not currently have access to this content.