Anisotropic strain gradient elasticity theory is applied to the solution of a mode III crack in a functionally graded material. The theory possesses two material characteristic lengths, l and l, which describe the size scale effect resulting from the underlining microstructure, and are associated to volumetric and surface strain energy, respectively. The governing differential equation of the problem is derived assuming that the shear modulus is a function of the Cartesian coordinate y, i.e., G=Gy=G0eγy, where G0 and γ are material constants. The crack boundary value problem is solved by means of Fourier transforms and the hypersingular integrodifferential equation method. The integral equation is discretized using the collocation method and a Chebyshev polynomial expansion. Formulas for stress intensity factors, KIII, are derived, and numerical results of KIII for various combinations of l,l, and γ are provided. Finally, conclusions are inferred and potential extensions of this work are discussed.

1.
Eringen, A. C., 1999, Microcontinuum Field Theories I. Foundations and Solids, Springer-Verlag, New York.
2.
Wu
,
C. H.
,
1992
, “
Cohesive Elasticity and Surface Phenomena
,”
Q. Appl. Math.
,
50
(
1
), pp.
73
103
.
3.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
4.
Lakes
,
R. S.
,
1983
, “
Size Effects and Micromechanics of a Porous Solid
,”
J. Mater. Sci.
,
18
, pp.
2572
2580
.
5.
Lakes
,
R. S.
,
1986
, “
Experimental Microelasticity of Two Porous Solids
,”
Int. J. Solids Struct.
,
22
, pp.
55
63
.
6.
Smyshlyaev
,
V. P.
, and
Fleck
,
N. A.
,
1996
, “
The Role of Strain Gradients in the Grain Size Effect for Polycrystals
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
465
495
.
7.
Van Vliet
,
M. R. A.
, and
Van Mier
,
J. G. M.
,
1999
, “
Effect of Strain Gradients on the Size Effect of Concrete in Uniaxial Tension
,”
Int. J. Fract.
,
95
, pp.
195
219
.
8.
Fannjiang
,
A. C.
,
Chan
,
Y.-S.
, and
Paulino
,
G. H.
,
2001
, “
Strain Gradient Elasticity for Antiplane Shear Cracks: A Hypersingular Integrodifferential Equation Approach
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
62
(
3
), pp.
1066
1091
.
9.
Paulino
,
G. H.
,
Fannjiang
,
A. C.
, and
Chan
,
Y.-S.
,
1999
, “
Gradient Elasticity Theory for a Mode III Crack in a Functionally Graded Material
,”
Mater. Sci. Forum
,
308–311
, pp.
971
976
.
10.
Exadaktylos
,
G.
,
Vardoulakis
,
I.
, and
Aifantis
,
E.
,
1996
, “
Cracks in Gradient Elastic Bodies With Surface Energy
,”
Int. J. Fract.
,
79
(
2
), pp.
107
119
.
11.
Vardoulakis
,
I.
,
Exadaktylos
,
G.
, and
Aifantis
,
E.
,
1996
, “
Gradient Elasticity With Surface Energy: Mode-III Crack Problem
,”
Int. J. Solids Struct.
,
33
(
30
), pp.
4531
4559
.
12.
Aifantis
,
E.
,
1992
, “
On the Role of Gradients in the Localization of Deformation and Fracture
,”
Int. J. Eng. Sci.
,
30
, pp.
1279
1299
.
13.
Zhang
,
L.
,
Huang
,
Y.
,
Chen
,
J. Y.
, and
Hwang
,
K. C.
,
1998
, “
The Mode III Full-Field Solution in Elastic Materials With Strain Gradient Effects
,”
Int. J. Fract.
,
92
(
4
), pp.
325
348
.
14.
Hwang
,
K. C.
,
Cuo
,
T. F.
,
Huang
,
Y.
, and
Chen
,
J. Y.
, 1998, “Fracture in Strain Gradient Elasticity,” Met. Mater., 4(4), pp. 593–600.
15.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2000
, “
Mechanics of Materials: Top-Down Approaches to Fracture
,”
Acta Mater.
,
48
, pp.
125
135
.
16.
Carrillo-Heian
,
E. M.
,
Carpenter
,
R. D.
,
Paulino
,
G. H.
,
Gibeling
,
J. C.
, and
Munir
,
Z. A.
,
2001
, “
Dense Layered MoSi2/SiC Functionally Graded Composites Formed by Field-Activated Synthesis
,”
J. Am. Ceram. Soc.
,
84
(
5
), pp.
962
968
.
17.
Jin
,
Z.-H.
, and
Paulino
,
G. H.
,
2001
, “
Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material
,”
Int. J. Fract.
,
107
(
1
), pp.
73
98
.
18.
Carrillo-Heian
,
E. M.
,
Unuvar
,
C.
,
Gibeling
,
J. C.
,
Paulino
,
G. H.
, and
Munir
,
Z. A.
,
2001
, “
Simultaneous Synthesis and Densification of Niobium Silicide/Niobium Composites
,”
Scr. Mater.
,
45
(
4
), pp.
405
412
.
19.
Carpenter
,
R. D.
,
Liang
,
W. W.
,
Paulino
,
G. H.
,
Gibeling
,
J. C.
, and
Munir
,
Z. A.
,
1999
, “
Fracture Testing and Analysis of a Layered Functionally Graded Ti/TiB Beam in 3-Point Bending
,”
Mater. Sci. Forum
,
837–842
, pp.
971
976
.
20.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
, Jr.,
W. P.
,
1995
, “
Review Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
,
30
, pp.
2183
2193
.
21.
Erdogan
,
F.
,
1995
, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
,
5
(
7
), pp.
753
770
.
22.
Hirai, T., 1996, “Functional Gradient Materials,” Materials Science and Technology, (Vol. 17B of Processing of Ceramics, Part 2), R. J. Brook, ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp. 292–341.
23.
Suresh, S., and Mortensen, A., 1998, Fundamentals of Functionally Graded Materials, ASM International and the Institute of Materials, IOM Communications Ltd., London.
24.
Casal
,
P.
,
1961
, “
La Capillarite Interne
,”
Cah. Groupe Fr. Etud. Rheol.
,
6
(
3
), pp.
31
37
.
25.
Casal
,
P.
, 1963, “Capillarite Interne en Mecanique,” C.R. Acad. Sci., 256, pp. 3820–3822.
26.
Casal
,
P.
, 1972, “La the´orie du second gradient et la capillarite´,” C.R. Acad. Sci. Paris Se´r. A, 274, pp. 1571–1574.
27.
Chan, Y.-S., Paulino, G. H., and Fannjiang, A. C., 2003, “Change of Constitutive Relations due to Interaction Between Strain Gradient Effect and Material Gradation,” to be submitted.
28.
Erdogan
,
F.
, and
Ozturk
,
M.
,
1992
, “
Diffusion Problems in Bonded Nonhomogeneous Materials With an Interface Cut
,”
Int. J. Eng. Sci.
,
30
(
10
), pp.
1507
1523
.
29.
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, New York.
30.
Martin
,
P. A.
,
1991
, “
End-Point Behavior of Solutions to Hypersingular Integral Equations
,”
Proc. R. Soc. London, Ser. A
,
432
(
1885
), pp.
301
320
.
31.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Q. Appl. Math.
,
30
, pp.
525
534
.
32.
Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solution of Singular Integral Equations,” Mechanics of Fracture, G. C. Sih, Ed., Vol. 1, Noordhoff, Leyden, The Netherlands, pp. 368–425.
33.
Chan
,
Y.-S.
,
Paulino
,
G. H.
, and
Fannjiang
,
A. C.
,
2001
, “
The Crack Problem for Nonhomogeneous Materials Under Antiplane Shear Loading—A Displacement Based Formulation
,”
Int. J. Solids Struct.
,
38
(
17
), pp.
2989
3005
.
34.
Chan
,
Y.-S.
,
Fannjiang
,
A. C.
, and
Paulino
,
G. H.
,
2003
, “
Integral Equations With Hypersingular Kernels—Theory and Applications to Fracture Mechanics
,”
Int. J. Eng. Sci.
,
41
(
7
), pp.
683
720
.
35.
Kaya
,
A. C.
, and
Erdogan
,
F.
,
1987
, “
On the Solution of Integral Equations With Strongly Singular Kernels
,”
Q. Appl. Math.
,
45
(
1
), pp.
105
122
.
36.
Folland, G. B., 1992, Fourier Analysis and Its Applications, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.
37.
Stroud, A. H., and Secrest, D., 1996, Gaussian Qudrature Formulas, Prentice-Hall, New York.
38.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
39.
Vardoulakis, I., and Sulem, J., 1995, Bifurcation Analysis in Geomechanics, Blackie Academic and Professional, Glasgow.
40.
Shi
,
M. X.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2000
, “
Fracture in a Higher-Order Elastic Continuum
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2513
2538
.
41.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
, pp.
51
78
.
42.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
, pp.
417
438
.
43.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Asby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiments
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
44.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for the Plasticity Length Scale
,”
Acta Mater.
,
46
, pp.
5109
5115
.
45.
Nix
,
W. D.
,
1997
, “
Elastic and Plastic Properties of Thin Films on Substrates: Nanoindentation Techniques
,”
Mater. Sci. Eng., A
,
234/236
, pp.
37
44
.
You do not currently have access to this content.