By virtue of the separation of variables technique, the spherically symmetric electroelastic dynamic problem of a spherically isotropic hollow sphere is transformed to an integral equation about a function with respect to time, which can be solved successfully by means of the interpolation method. Then the solution of displacements, stresses, electric displacements, and electric potential are obtained. The present method is suitable for a piezoelectric hollow sphere with an arbitrary thickness subjected to spherically symmetric electric potential and radial mechanical loads, that both can be arbitrary functions about the time variable, at the internal and external surfaces.

1.
Huth
,
J. H.
, and
Cole
,
J. D.
,
1955
, “
Elastic-Stress Waves Produced by Pressure Loads on a Spherical Shell
,”
ASME J. Appl. Mech.
,
22
, pp.
473
478
.
2.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
, pp.
800
806
.
3.
Chou
,
P. C.
, and
Koenig
,
H. A.
,
1966
, “
A Unified Approach to Cylindrical and Spherical Elastic Waves by Method of Characters
,”
ASME J. Appl. Mech.
,
33
, pp.
159
167
.
4.
Rose
,
J. L.
,
Chou
,
S. C.
, and
Chou
,
P. C.
,
1973
, “
Vibration Analysis of Thick-Walled Spheres and Cylinders
,”
J. Acoust. Soc. Am.
,
53
, pp.
771
776
.
5.
Cinelli
,
G.
,
1966
, “
Dynamic Vibrations and Stresses in Elastic Cylinders and Spheres
,”
ASME J. Appl. Mech.
,
33
, pp.
825
830
.
6.
Pao
,
Y. H.
, and
Ceranoglu
,
A. N.
,
1978
, “
Determination of Transient Responses of a Thick-Walled Spherical Shell by the Ray Theory
,”
ASME J. Appl. Mech.
,
45
, pp.
114
122
.
7.
Loza
,
I. A.
, and
Shul’ga
,
N. A.
,
1984
, “
Axisymmetric Vibrations of a Hollow Piezoceramic Sphere With Radial Polarization
,”
Sov. Appl. Mech.
,
20
, pp.
113
117
.
8.
Loza
,
I. A.
, and
Shul’ga
,
N. A.
,
1990
, “
Forced Axisymmetric Vibrations of a Hollow Piezoceramic Sphere With an Electrical Method of Excitation
,”
Sov. Appl. Mech.
,
26
, pp.
818
822
.
9.
Shul’ga
,
N. A.
,
1986
, “
Electroelastic Oscillation of a Piezoceramic Sphere With Radial Polarization
,”
Sov. Appl. Mech.
,
22
, pp.
497
500
.
10.
Shul’ga
,
N. A.
,
1990
, “
Radial Electroelastic Vibrations of a Hollow Piezoceramic Sphere
,”
Sov. Appl. Mech.
,
22
, pp.
731
734
.
11.
Shul’ga
,
N. A.
,
1993
, “
Harmonic Electroelastic Oscillations of Spherical Bodies
,”
Sov. Appl. Mech.
,
29
, pp.
812
817
.
12.
Heyliger
,
P.
, and
Wu
,
Y. C.
,
1999
, “
Electroelastic Fields in Layered Piezoelectric Spheres
,”
Int. J. Eng. Sci.
,
37
, pp.
143
161
.
13.
Cai
,
J. B.
,
Chen
,
W. Q.
,
Ye
,
G. R.
, and
Ding
,
H. J.
,
2000
, “
Natural Frequencies of Submerged Piezoceramic Hollow Spheres
,”
Acta Mech. Sin.
,
16
, pp.
55
62
.
14.
Chen
,
W. Q.
,
Ding
,
H. J.
, and
Xu
,
R. Q.
,
2001
, “
Three Dimensional Free Vibration Analysis of a Fluid-Filled Piezoelectric Hollow Sphere
,”
Comput. Struct.
,
79
, pp.
653
663
.
15.
Borisyuk
,
A. I.
, and
Kirichok
,
I. F.
,
1979
, “
Steady-State Radial Vibrations of Piezoceramic Spheres in Compressible Fluid
,”
Sov. Appl. Mech.
,
15
, pp.
936
940
.
16.
Li
,
H. Y.
,
Liu
,
Z. X.
, and
Lin
,
Q. R.
,
2000
, “
Spherical-Symmetric Steady-State Response of Piezoelectric Spherical Shell Under External Excitation
,”
Appl. Math. Mech.
,
21
, pp.
947
956
.
17.
Kress, R., 1989, Linear Integral Equations (Applied Mathematical Sciences, Volume 82), Springer-Verlag, Berlin.
18.
Christopher, T. H., and Baker, M. A., 1977, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, UK.
You do not currently have access to this content.