By virtue of the separation of variables technique, the spherically symmetric electroelastic dynamic problem of a spherically isotropic hollow sphere is transformed to an integral equation about a function with respect to time, which can be solved successfully by means of the interpolation method. Then the solution of displacements, stresses, electric displacements, and electric potential are obtained. The present method is suitable for a piezoelectric hollow sphere with an arbitrary thickness subjected to spherically symmetric electric potential and radial mechanical loads, that both can be arbitrary functions about the time variable, at the internal and external surfaces.
1.
Huth
, J. H.
, and Cole
, J. D.
, 1955
, “Elastic-Stress Waves Produced by Pressure Loads on a Spherical Shell
,” ASME J. Appl. Mech.
, 22
, pp. 473
–478
.2.
Baker
, W. E.
, Hu
, W. C. L.
, and Jackson
, T. R.
, 1966
, “Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,” ASME J. Appl. Mech.
, 33
, pp. 800
–806
.3.
Chou
, P. C.
, and Koenig
, H. A.
, 1966
, “A Unified Approach to Cylindrical and Spherical Elastic Waves by Method of Characters
,” ASME J. Appl. Mech.
, 33
, pp. 159
–167
.4.
Rose
, J. L.
, Chou
, S. C.
, and Chou
, P. C.
, 1973
, “Vibration Analysis of Thick-Walled Spheres and Cylinders
,” J. Acoust. Soc. Am.
, 53
, pp. 771
–776
.5.
Cinelli
, G.
, 1966
, “Dynamic Vibrations and Stresses in Elastic Cylinders and Spheres
,” ASME J. Appl. Mech.
, 33
, pp. 825
–830
.6.
Pao
, Y. H.
, and Ceranoglu
, A. N.
, 1978
, “Determination of Transient Responses of a Thick-Walled Spherical Shell by the Ray Theory
,” ASME J. Appl. Mech.
, 45
, pp. 114
–122
.7.
Loza
, I. A.
, and Shul’ga
, N. A.
, 1984
, “Axisymmetric Vibrations of a Hollow Piezoceramic Sphere With Radial Polarization
,” Sov. Appl. Mech.
,20
, pp. 113
–117
.8.
Loza
, I. A.
, and Shul’ga
, N. A.
, 1990
, “Forced Axisymmetric Vibrations of a Hollow Piezoceramic Sphere With an Electrical Method of Excitation
,” Sov. Appl. Mech.
,26
, pp. 818
–822
.9.
Shul’ga
, N. A.
, 1986
, “Electroelastic Oscillation of a Piezoceramic Sphere With Radial Polarization
,” Sov. Appl. Mech.
,22
, pp. 497
–500
.10.
Shul’ga
, N. A.
, 1990
, “Radial Electroelastic Vibrations of a Hollow Piezoceramic Sphere
,” Sov. Appl. Mech.
,22
, pp. 731
–734
.11.
Shul’ga
, N. A.
, 1993
, “Harmonic Electroelastic Oscillations of Spherical Bodies
,” Sov. Appl. Mech.
,29
, pp. 812
–817
.12.
Heyliger
, P.
, and Wu
, Y. C.
, 1999
, “Electroelastic Fields in Layered Piezoelectric Spheres
,” Int. J. Eng. Sci.
, 37
, pp. 143
–161
.13.
Cai
, J. B.
, Chen
, W. Q.
, Ye
, G. R.
, and Ding
, H. J.
, 2000
, “Natural Frequencies of Submerged Piezoceramic Hollow Spheres
,” Acta Mech. Sin.
, 16
, pp. 55
–62
.14.
Chen
, W. Q.
, Ding
, H. J.
, and Xu
, R. Q.
, 2001
, “Three Dimensional Free Vibration Analysis of a Fluid-Filled Piezoelectric Hollow Sphere
,” Comput. Struct.
, 79
, pp. 653
–663
.15.
Borisyuk
, A. I.
, and Kirichok
, I. F.
, 1979
, “Steady-State Radial Vibrations of Piezoceramic Spheres in Compressible Fluid
,” Sov. Appl. Mech.
,15
, pp. 936
–940
.16.
Li
, H. Y.
, Liu
, Z. X.
, and Lin
, Q. R.
, 2000
, “Spherical-Symmetric Steady-State Response of Piezoelectric Spherical Shell Under External Excitation
,” Appl. Math. Mech.
, 21
, pp. 947
–956
.17.
Kress, R., 1989, Linear Integral Equations (Applied Mathematical Sciences, Volume 82), Springer-Verlag, Berlin.
18.
Christopher, T. H., and Baker, M. A., 1977, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, UK.
Copyright © 2003
by ASME
You do not currently have access to this content.