In the present work, new mixed variational formulations for a first-order shear deformation laminate theory are proposed. The out-of-plane stresses are considered as primary variables of the problem. In particular, the shear stress profile is represented either by independent piecewise quadratic functions in the thickness or by satisfying the three-dimensional equilibrium equations written in terms of midplane strains and curvatures. The developed formulations are characterized by several advantages: They do not require the use of shear correction factors as well as the out-of-plane shear stresses can be derived without post-processing procedures. Some numerical applications are presented in order to verify the effectiveness of the proposed formulations. In particular, analytical solutions obtained using the developed models are compared with the exact three-dimensional solution, with other classical laminate analytical solutions and with finite element results. Finally, we note that the proposed formulations may represent a rational base for the development of effective finite elements for composite laminates.

1.
Ochoa, O. O., and Reddy, J. N., 1992, Finite Element Analysis of Composite Laminates, Kluwer, Dordrecht, The Netherlands.
2.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates, Theory and Analysis, CRC Press, Boca Raton, FL.
3.
Reissner
,
E.
, and
Stavsky
,
Y.
,
1961
, “
Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
28
, pp.
402
412
.
4.
Ambartsumyan, S. A., 1970, Theory of Anisotropic Plates, Technomic, Lancaster, PA.
5.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
69
77
.
6.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
38
, pp.
31
38
.
7.
Yang
,
P. C.
,
Norris
,
C. H.
, and
Stavsky
,
Y.
,
1996
, “
Elastic Wave Propagation in Heterogeneous Plates
,”
Int. J. Solids Struct.
,
2
, pp.
665
684
.
8.
Whitney
,
J. M.
, and
Pagano
,
N. J.
,
1970
, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
,
37
, pp.
1031
1036
.
9.
Whitney
,
J. M.
,
1973
, “
Shear Correction Factors for Orthotropic Laminates Under Static Load
,”
ASME J. Appl. Mech.
,
40
, pp.
302
304
.
10.
Noor
,
A. K.
, and
Burton
,
W. S.
,
1990
, “
Assessment of Computational Models for Multilayered Anisotropic Plates
,”
Comput. Struct.
,
14
, pp.
233
265
.
11.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Peters
,
J. M.
,
1990
, “
Predictor-Corrector Procedures for Stress and Free Vibration Analyses of Multilayered Composite Plates and Shells
,”
Comput. Methods Appl. Mech. Eng.
,
82
, pp.
341
363
.
12.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
,
1996
, “
Computational Model for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
,
49
, pp.
155
199
.
13.
Auricchio
,
F.
, and
Sacco
,
E.
,
1999
, “
A Mixed-Enhanced Finite Element for the Analysis of Laminated Composite Plates
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
1481
1504
.
14.
Alfano
,
G.
,
Auricchio
,
F.
,
Rosati
,
L.
, and
Sacco
,
E.
,
2001
, “
MITC Finite Elements for Laminated Composite Plates
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
707
738
.
15.
Pai
,
P. F.
,
1995
, “
A New Look at the Shear Correction Factors and Warping Functions of Anisotropic Laminates
,”
Int. J. Solids Struct.
,
32
, pp.
2295
2313
.
16.
Yunquin
,
Q.
, and
Knight
,
N. F.
Jr.
,
1996
, “
A Refined First-Order Shear-Deformation Theory and Its Justification by Plane-Strain Bending Problem of Laminated Plates
,”
Int. J. Solids Struct.
,
33
, pp.
49
64
.
17.
Rolfes
,
R.
, and
Rohwer
,
K.
,
1997
, “
Improved Transverse Shear Stresses in Composite Finite Element Based on First Order Shear Deformation Theory
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
51
60
.
18.
Rolfes
,
R.
,
1998
, “
Evaluation of Transverse Thermal Stresses in Composite Plates Based on First Order Shear Deformation Theory
,”
Comput. Methods Appl. Mech. Eng.
,
167
, pp.
355
368
.
19.
Lo
,
K. H.
,
Christensen
,
R. M.
, and
Wu
,
E. M.
,
1978
, “
A High-Order Theory of Plate Deformation. Part II: Laminated Plates
,”
ASME J. Appl. Mech.
,
44
, pp.
669
676
.
20.
Reddy
,
J. N.
,
1984
, “
A Simple High-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
745
752
.
21.
Seide
,
P.
, 1980, “An Improved Approximate Theory for Bending of Laminated Plates,” Mech. Today, 5, pp. 451–466.
22.
Reddy
,
J. N.
,
1987
, “
A Generalization of Two-Dimensional Theories of Laminated Plates
,”
Commun. Appl. Numer. Methods
3
, pp.
173
180
.
23.
Reddy
,
J. N.
,
1990
, “
On Refined Theories of Composite Laminates
,”
Meccanica
,
25
, pp.
230
238
.
24.
Reddy
,
J. N.
,
Barbero
,
E. J.
, and
Teply
,
J. L.
,
1990
, “
An Accurate Determination of Stresses in Thick Laminates Using a Generalized Plate Theory
,”
Int. J. Numer. Methods Eng.
,
29
, pp.
1
14
.
25.
Bisegna
,
P.
, and
Sacco
,
E.
,
1997
, “
A Layer-Wise Laminate Theory Rationally Deduced From Three-Dimensional Elasticity
,”
ASME J. Appl. Mech.
,
64
, pp.
538
544
.
26.
Barbero
,
E. J.
,
1992
, “
3-D Finite Element for Laminated Composites With 2-D Kinematic Constraints
,”
Comput. Struct.
,
45
, pp.
263
271
.
27.
Di Sciuva
,
M.
, and
Icardi
,
U.
,
1993
, “
Discrete-Layer Models for Multilayered Shells Accounting for Interlayer Continuity
,”
Meccanica
,
28
, pp.
281
291
.
28.
Carrera
,
E.
,
1999
, “
Multilayered Shell Theories Accounting for a Layer-Wise Mixed Description. Part I. Governing Equations. Part II. Numerical Evaluations
,”
AIAA J.
,
37
, pp.
1117
1124
.
29.
Aitharaju
,
V. R.
, and
Averill
,
R. C.
,
2000
, “
C0 Zig-Zag Kinematic Displacement Models for the Analysis of Laminated Composites
,”
Mech. Compos. Mat. Struct.
,
6
, pp.
31
56
.
30.
Carrera
,
E.
,
2001
, “
Developments, Ideas, and Evaluations Based Upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
54
, pp.
301
328
.
31.
Maenghyo
,
Cho
, and
Min-Ho
,
Kim
,
1996
, “
A Postprocess Method Using a Displacement Field of Higher-Order Shell Theory
,”
Compos. Struct.
,
34
, pp.
185
196
.
32.
Rolfes
,
R.
,
Rohwer
,
K.
, and
Ballerstaedt
,
M.
,
1998
, “
Efficient Linear Transverse Normal Stress Analysis of Layered Composite Plates
,”
Compos. Struct.
,
68
, pp.
643
652
.
33.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
, pp.
20
34
.
34.
Bisegna
,
P.
, and
Sacco
,
E.
,
1997
, “
A Rational Deduction of Plate Theories From the Three-Dimensional Linear Elasticity
,”
Z. Angew. Math. Mech.
,
77
, pp.
349
366
.
35.
Auricchio
,
F.
, and
Sacco
,
E.
,
1999
, “
Partial-Mixed Formulation and Refined Models for the Analysis of Composite Laminates Within a FSDT
,”
Compos. Struct.
,
46
, pp.
103
113
.
You do not currently have access to this content.