The study of the behavior of bubbles in complex fluids is of industrial as well as of academic importance. Bubble velocity-volume relations, bubble shapes, as well as viscous, elastic, and surfactant effects play a role in bubble dynamics. In this note we extend the analysis of Richardson to a non-Newtonian fluid.

1.
De Kee, D., Chhabra, R. P., and Rodrigue, D., 1996, “Hydrodynamics of Free Rise of Bubbles in Non-Newtonian Polymer Solutions,” Handbook of Applied Polymer Processing Technology, N. P. and P. N. Cheremisinoff, eds., Marcel Dekker, New York, p. 87.
2.
Rodrigue
,
D.
,
De Kee
,
D.
, and
Chan Man Fong
,
C. F.
,
1996
, “
An Experimental Study of the Effect of Surfactants on the Free Rise Velocity of Gas Bubbles
,”
J. Non-Newtonian Fluid Mech.
,
66
(
2–3
), pp.
213
232
.
3.
Rodrigue
,
D.
,
De Kee
,
D.
, and
Chan Man Fong
,
C. F.
,
1998
, “
Bubble Velocities: Further Developments on the Jump Discontinuity
,”
J. Non-Newtonian Fluid Mech.
,
79
(
1
), pp.
45
55
.
4.
Liu
,
Y.
,
Liao
,
T.
, and
Joseph
,
D.
,
1995
, “
A Two-Dimensional Cusp at the Trailing Edge of an Air Bubble Rising in a Viscoelastic Liquid
,”
J. Fluid Mech.
,
304
, pp.
321
342
.
5.
Rumscheidt
,
F.
, and
Mason
,
S.
,
1961
, “
Particle Motions in Sheared Suspensions. XII. Deformation and Burst of Fluid Drops in Shear and Hyperbolic Flow
,”
J. Colloid Sci.
,
16
, pp.
238
261
.
6.
Richardson
,
S.
,
1968
, “
Two-Dimensional Bubbles in Slow Viscous Flows
,”
J. Fluid Mech.
,
33
, pp.
476
493
.
7.
Joseph
,
D.
,
Nelson
,
J.
,
Renardy
,
M.
, and
Renardy
,
Y.
,
1991
, “
Two-Dimensional Cusped Interfaces
,”
J. Fluid Mech.
,
223
, pp.
383
409
.
8.
Joseph
,
D.
,
1992
, “
Understanding Cusped Interfaces
,”
J. Non-Newtonian Fluid Mech.
,
44
, pp.
127
148
.
9.
Jeong
,
J. T.
, and
Moffat
,
H. K.
,
1992
, “
Free-Surace Cusps Associated With Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
241
, pp.
1
22
.
10.
Noh
,
D.
,
Kang
,
I.
, and
Leal
,
L.
,
1983
, “
Numerical Solutions for the Deformation of a Bubble Rising in Dilute Polymeric Fluids
,”
Phys. Fluids A
,
5
(
6
), pp.
1315
1332
.
11.
Chan Man Fong
,
C. F.
, and
De Kee
,
D.
,
1994
,“
The Effect of a Thermal Gradient on the Motion of a Bubble in a Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
53
, pp.
165
174
.
12.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Polymeric Liquids (Fluid Mechanics 1), Second Ed., John Wiley and Sons, New York.
13.
De Kee, D., Rodrigue, D., and Chan Man Fong, C. F., 1996, Rheology and Fluid Mech. of Nonlinear Materials, D. A. Siginer and S. G. Advani, eds., ASME, New York, AMD-Vol. 217, p. 37.
14.
De Kee
,
D.
, and
Chhabra
,
R. P.
,
1998
, “
A Photographic Study of Shapes of Bubbles and Coalescence in Non-Newtonian Polymer Solutions
,”
Rheol. Acta
,
27
(
6
), pp.
656
660
.
15.
Hassager
,
O.
,
1976
, “
Negative Wake Behind Bubbles in Non-Newtonian Liquids
,”
Nature (London)
,
279
, pp.
402
403
.
16.
Rodrigue
,
D.
, and
De Kee
,
D.
,
1999
, “
Bubble Velocity Jump Discontinuity in Polyacrylamide Solutions: A Photographic Study
,”
Rheol. Acta
,
38
(
2
), pp.
177
182
.
You do not currently have access to this content.