The study of the behavior of bubbles in complex fluids is of industrial as well as of academic importance. Bubble velocity-volume relations, bubble shapes, as well as viscous, elastic, and surfactant effects play a role in bubble dynamics. In this note we extend the analysis of Richardson to a non-Newtonian fluid.
Issue Section:
Brief Notes
1.
De Kee, D., Chhabra, R. P., and Rodrigue, D., 1996, “Hydrodynamics of Free Rise of Bubbles in Non-Newtonian Polymer Solutions,” Handbook of Applied Polymer Processing Technology, N. P. and P. N. Cheremisinoff, eds., Marcel Dekker, New York, p. 87.
2.
Rodrigue
, D.
, De Kee
, D.
, and Chan Man Fong
, C. F.
, 1996
, “An Experimental Study of the Effect of Surfactants on the Free Rise Velocity of Gas Bubbles
,” J. Non-Newtonian Fluid Mech.
, 66
(2–3
), pp. 213
–232
.3.
Rodrigue
, D.
, De Kee
, D.
, and Chan Man Fong
, C. F.
, 1998
, “Bubble Velocities: Further Developments on the Jump Discontinuity
,” J. Non-Newtonian Fluid Mech.
, 79
(1
), pp. 45
–55
.4.
Liu
, Y.
, Liao
, T.
, and Joseph
, D.
, 1995
, “A Two-Dimensional Cusp at the Trailing Edge of an Air Bubble Rising in a Viscoelastic Liquid
,” J. Fluid Mech.
, 304
, pp. 321
–342
.5.
Rumscheidt
, F.
, and Mason
, S.
, 1961
, “Particle Motions in Sheared Suspensions. XII. Deformation and Burst of Fluid Drops in Shear and Hyperbolic Flow
,” J. Colloid Sci.
, 16
, pp. 238
–261
.6.
Richardson
, S.
, 1968
, “Two-Dimensional Bubbles in Slow Viscous Flows
,” J. Fluid Mech.
, 33
, pp. 476
–493
.7.
Joseph
, D.
, Nelson
, J.
, Renardy
, M.
, and Renardy
, Y.
, 1991
, “Two-Dimensional Cusped Interfaces
,” J. Fluid Mech.
, 223
, pp. 383
–409
.8.
Joseph
, D.
, 1992
, “Understanding Cusped Interfaces
,” J. Non-Newtonian Fluid Mech.
, 44
, pp. 127
–148
.9.
Jeong
, J. T.
, and Moffat
, H. K.
, 1992
, “Free-Surace Cusps Associated With Flow at Low Reynolds Number
,” J. Fluid Mech.
, 241
, pp. 1
–22
.10.
Noh
, D.
, Kang
, I.
, and Leal
, L.
, 1983
, “Numerical Solutions for the Deformation of a Bubble Rising in Dilute Polymeric Fluids
,” Phys. Fluids A
, 5
(6
), pp. 1315
–1332
.11.
Chan Man Fong
, C. F.
, and De Kee
, D.
, 1994
,“The Effect of a Thermal Gradient on the Motion of a Bubble in a Viscoelastic Fluid
,” J. Non-Newtonian Fluid Mech.
, 53
, pp. 165
–174
.12.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Polymeric Liquids (Fluid Mechanics 1), Second Ed., John Wiley and Sons, New York.
13.
De Kee, D., Rodrigue, D., and Chan Man Fong, C. F., 1996, Rheology and Fluid Mech. of Nonlinear Materials, D. A. Siginer and S. G. Advani, eds., ASME, New York, AMD-Vol. 217, p. 37.
14.
De Kee
, D.
, and Chhabra
, R. P.
, 1998
, “A Photographic Study of Shapes of Bubbles and Coalescence in Non-Newtonian Polymer Solutions
,” Rheol. Acta
, 27
(6
), pp. 656
–660
.15.
Hassager
, O.
, 1976
, “Negative Wake Behind Bubbles in Non-Newtonian Liquids
,” Nature (London)
, 279
, pp. 402
–403
.16.
Rodrigue
, D.
, and De Kee
, D.
, 1999
, “Bubble Velocity Jump Discontinuity in Polyacrylamide Solutions: A Photographic Study
,” Rheol. Acta
, 38
(2
), pp. 177
–182
.Copyright © 2002
by ASME
You do not currently have access to this content.