Radiation loading on a vibrating structure is best described through its radiation impedance. In the present work the modal acoustic radiation impedance load on an infinitely long cylindrical source harmonically excited in circumferentially periodic (axially independent) spatial pattern, while positioned concentrically within a fluid cylinder, which is embedded in a fluid-saturated unbounded elastic porous medium, is computed. This configuration, which is a realistic idealization of an acoustic logging tool suspended in a fluid-filled borehole within a permeable surrounding formation (White, J. E., 1983, Underground Sound Application of Seismic Waves, Elsevier, Amsterdam, Fig. 5.29, p. 183), is of practical importance with a multitude of possible applications in seismo-acoustics and noise control engineering. The formulation utilizes the Biot phenomenological model to represent the behavior of the sound in the porous, fluid-saturated, macroscopically homogeneous and isotropic surrounding medium. Employing the appropriate wave-harmonic field expansions and the pertinent boundary conditions for the given boundary configuration, a closed-form solution in the form of an infinite series is developed and the resistive and reactive components of modal radiation impedances are determined. A numerical example for a cylindrical surface excited in vibrational modes of various order, immersed in a water-filled cavity which is embedded within a water-saturated Ridgefield sandstone environment, is presented and several limiting cases are examined. Effects of porosity, frame stiffness, source size, and the interface permeability condition on the impedance values are presented and discussed.

1.
Gassmann
,
F.
,
1951
, “
Uber die elastizitat poroser medien,”
Vieteljahrsschrift d Naturforsch. Gesell. Zurich
,
96
, pp.
1
23
.
2.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, I: Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
168
178
.
3.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, II: Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
179
191
.
4.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
23
, pp.
1482
1498
.
5.
White, J. E., 1983, Underground Sound: Application of Seismic Waves, Elsevier, Amsterdam.
6.
Plona
,
T. J.
,
1980
, “
Observation of the Second Compressional Wave in a Porous Medium at Ultrasonic Frequencies
,”
Appl. Phys. Lett.
,
36
, pp.
259
261
.
7.
Berryman
,
J. G.
,
1980
, “
Confirmation of Biot’s Theory
,”
Appl. Phys. Lett.
,
73
, pp.
382
384
.
8.
Burridge
,
R.
, and
Keller
,
J. B.
,
1981
, “
Poroelasticity Equations Derived From Microstructure
,”
J. Acoust. Soc. Am.
,
70
, p.
1140
1140
.
9.
Van der Grinten
,
J. G. M.
,
Van Dongen
,
M. E. H.
, and
Van der Kogel
,
H.
,
1985
, “
A Hock-Tube Technique for Studying Pore-Pressure Propagation in a Dry and Water-Saturated Porous Medium
,”
J. Appl. Phys.
,
58
, pp.
2937
2942
.
10.
Van der Grinten
,
J. G. M.
,
Van Dongen
,
M. E. H.
, and
Van der Kogel
,
H.
,
1987
, “
Strain and Pore Pressure Propagation in a Water-Saturated Porous Medium
,”
J. Appl. Phys.
,
62
, pp.
4682
4687
.
11.
Rasolofosaon
,
P. N. J.
,
1988
, “
Importance of the Interface Hydraulic Condition on Generation of Second Bulk Compressional Wave in Porous Media
,”
Appl. Phys. Lett.
,
52
, pp.
780
782
.
12.
Kelder, O., and Smeulders, D. M. J., 1995, “Propagation and Damping of Compressional Waves in Porous Rocks: Theory and Experiments,” Ann. Internat. Mtg., 64th Annual Meeting, Society of Exploration Geophysicists, expanded abstracts, pp. 675–678.
13.
Kelder
,
O.
, and
Smeulders
,
D. M. J.
,
1997
, “
Observation of the Biot Slow Wave in Water-Saturated Nivelsteiner Sandstone
,”
Geophysics
,
62
, pp.
1794
1796
.
14.
Gurevich
,
B.
,
Kelder
,
O.
, and
Smeulders
,
D. M. J.
,
1999
, “
Validation of the Slow Compressional Wave in Porous Media: Comparison of Experiments and Numerical Simulations
,”
Transp. Porous Media
,
36
, pp.
149
160
.
15.
Deresiewicz
,
H.
, and
Skalak
,
R.
,
1963
, “
On Uniqueness in Dynamic Poroelasticity
,”
Bull. Seismol. Soc. Am.
,
53
, pp.
783
788
.
16.
Bourbie, T., Coussy, O., and Zinszner, B. E., 1987, Acoustics of Porous Media, Gulf Publishing, Houston.
17.
Mei
,
C. C.
, and
Si
,
B. I.
,
1984
, “
Scattering of Simple Harmonic Waves by a Circular Cavity in a Fluid-Infiltrated Poro-elastic Medium
,”
Wave Motion
,
6
, pp.
265
278
.
18.
Berryman
,
J. G.
,
1985
, “
Scattering by a Spherical Inhomogeneity in a Fluid-Saturated Porous Medium
,”
J. Math. Phys.
,
26
, pp.
1408
1419
.
19.
Zimmerman
,
C.
,
1993
, “
Scattering of Plane Compressional Waves by a Spherical Inclusions in a Poroelastic Medium
,”
J. Acoust. Soc. Am.
,
94
, pp.
527
536
.
20.
Zimmerman
,
C.
, and
Stern
,
M.
,
1994
, “
Analytical Solutions for Harmonic Wave Propagation in Poroelastic Media
,”
J. Eng. Mech.
,
120
, pp.
2154
2178
.
21.
Kargl
,
S. G.
, and
Lim
,
R.
,
1993
, “
A Transition-Matrix Formulation of Scattering in Homogeneous, Saturated, Porous Media
,”
J. Acoust. Soc. Am.
,
94
, pp.
1527
1550
.
22.
Lim, R., 1993, “Scattering by a Layered Poroelastic Obstacle Embedded in a Poroelastic Host,” ASA 126th Meeting, Denver, Acoustical Society of America, pp. 160–175.
23.
Lim
,
R.
,
1994
, “
Scattering by an Obstacle in a Plane-Startified Poroelastic Medium: Application to an Obstacle in Ocean Sediments
,”
J. Acoust. Soc. Am.
,
95
, pp.
1223
1244
.
24.
Gurevich
,
B.
,
Sadovnichaja
,
A. P.
,
Lopatnikov
,
S. L.
, and
Shapiro
,
S. A.
,
1998
, “
Scattering of a Compressional Wave in a Poroelastic Medium by an Ellipsoidal Inclusion
,”
Geophys. J. Int.
,
133
, pp.
91
103
.
25.
Senjuntichai
,
T.
, and
Rajapakse
,
R. K. D.
,
1993
, “
Transient Response of a Circular Cavity in a Poroelastic Medium
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
17
, pp.
357
383
.
26.
Qi
,
Q.
, and
Geers
,
T. L.
,
1997
, “
Doubly Asymptotic Approximations for Transient Poroelastodynamics
,”
J. Acoust. Soc. Am.
,
102
, pp.
1361
1371
.
27.
Hasheminejad
,
M.
,
1998
, “
Modal Impedances for a Spherical Source in a Fluid-Filled Spherical Cavity Embedded Within a Fluid-Infiltrated Elastic Porous Medium
,”
Int. J. Solids Struct.
,
35
, pp.
129
148
.
28.
Hasheminejad, M., 2001, “Modal Acoustic Force on a Spherical Radiator in an Acoustic Half-Space With Locally Reacting Boundary,” Acta Acust. (Beijing), Acta Acustica/Acustica, to appear.
29.
Stinson
,
M. R.
,
1995
, “
A Note on the Use of an Approximate Formula to Predict Sound Fields Above an Impedance Plane due to a Point Source
,”
J. Acoust. Soc. Am.
,
98
, pp.
1810
1812
.
30.
Li
,
K. M.
,
Taherzadeh
,
S.
, and
Attenborough
,
K.
,
1997
, “
Sound Propagation From a Dipole Source Near an Impedance Plane
,”
J. Acoust. Soc. Am.
,
101
, pp.
3343
3352
.
31.
Li
,
K. M.
, and
Taherzadeh
,
S.
,
1997
, “
The Sound Field of an Arbitrarily Oriented Quadrupole Near Ground Surface
,”
J. Acoust. Soc. Am.
,
102
, pp.
2050
2057
.
32.
Attenborough
,
K.
, and
Richards
,
T. L.
,
1989
, “
Solid Particle Motion Induced by a Point Source Above a Poroelastic Half-Space
,”
J. Acoust. Soc. Am.
,
86
, pp.
1085
1092
.
33.
Richards
,
T. L.
,
Attenborough
,
K.
,
Heap
,
N. W.
, and
Watson
,
A. P.
,
1985
, “
Penetration of Sound From a Point Source Into a Rigid Porous Medium
,”
J. Acoust. Soc. Am.
,
78
, pp.
956
963
.
34.
Tooms
,
S.
,
Taherzadeh
,
S.
, and
Attenborough
,
K.
,
1993
, “
Sound Propagation in a Refracting Fluid Above a Layered Fluid-Saturated Porous Elastic Material
,”
J. Acoust. Soc. Am.
,
93
, pp.
173
181
.
35.
Sabatier
,
J. M.
,
Bass
,
H. E.
,
Bolen
,
L. N.
,
Attenborough
,
K.
, and
Sastry
,
V. V. S. S.
,
1986
, “
The Interaction of Airborne Sound With the Porous Ground: The Theoretical Formulation
,”
J. Acoust. Soc. Am.
,
79
, pp.
1345
1352
.
36.
Hu
,
Z.
, and
Bolton
,
J. S.
,
1994
, “
Sound Propagation From an Arbitrary Oriented Multipole Placed Near a Plane, Finite Impedance Surface
,”
J. Sound Vib.
,
170
, pp.
637
699
.
37.
White
,
J. E.
,
1984
, “
Radiation From a Borehole
,”
Colo. School Mines Q.
,
2
, pp.
46
50
.
38.
Poterasu
,
V. F.
,
1993
, “
Coupled Vibrations of a Cavity Filled With a Pulsating Fluid in Elastic Infinite Media by the Boundary Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
106
, pp.
285
296
.
39.
Zwikker, C., and Kosten, C. W., 1949, Sound Absorbing Materials, Elsevier, Amsterdam.
40.
Allard, J. F., 1993, Propagation of Sound in Porous Media, Modelling Sound Absorbing Materials, Elsevier Applied Science, London.
41.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid Mech.
,
76
, pp.
379
402
.
42.
Achenbach, J. D., 1976, Wave Propagation in Elastic Solids, North-Holland, New York.
43.
Abramovitz, M., and Stegun, I. A., 1964, Handbook of Mathematical Functions, National Bureau of Standards, Washington, DC.
44.
Junger, M. C., and Feit, D., 1972, Sound, Structures, and Their Interaction, M. I. T. Press, Cambridge, MA.
45.
Hasheminejad
,
M.
, and
Geers
,
T. L.
,
1993
, “
Modal Impedances for Two Spheres in a Thermoviscous Fluid
,”
J. Acoust. Soc. Am.
,
94
, pp.
2205
2214
.
46.
Amos
,
D. E.
,
1986
, “
A Portable Package for Bessel Functions of Complex Argument and Non-negative Order
,”
Trans. Math. Software
,
97
, pp.
121
133
.
47.
Johnson
,
D. L.
,
Hemmick
,
D. L.
, and
Kojima
,
H.
,
1994
, “
Probing Porous Media With First and Second Sound, I. Dynamic Permeability
,”
J. Appl. Phys.
,
76
, pp.
104
114
.
48.
Johnson
,
D. L.
,
Plona
,
T. J.
, and
Kojima
,
H.
,
1994
, “
Probing Porous Media With First and Second Sound, II. Acoustic Properties of Water-Saturated Porous Media
,”
J. Appl. Phys.
,
76
, pp.
115
125
.
49.
Hasheminejad
,
M.
, and
Geers
,
T. L.
,
1992
, “
The Accuracy of Doubly Asymptotic Approximations for an Acoustic Half-Space
,”
ASME J. Vibr. Acoust.
,
114
, pp.
555
563
.
50.
Berryman, J. G., 1982, “Elastic Waves in Fluid-Saturated Porous Media,” Macroscopic Properties of Disordered Media (Lecture Notes in Physics, 154), R. Burridge, et al., eds., Springer-Verlag, Berlin, pp. 39–49.
51.
Skudrzyk, E., 1971, The Foundations of Acoustics, Springer-Verlag, New York.
You do not currently have access to this content.