In this paper model reduction of an unsymmetric and damped structural system is presented using a two-sided dynamic condensation technique. The method is an iterative one and essentially utilizes orthonormalized complex eigenvectors of the unsymmetric system. The eigensolution of the reduced order model with specified master degrees-of-freedom is obtained by Lanczos algorithm. The model reduction procedure is further utilized in substructure synthesis and eigenvalue analysis of large size unsymmetric systems. Application of the condensation technique is illustrated via two example problems of rotor bearing systems.
Issue Section:
Technical Papers
1.
Kidder
, R. L.
, 1973
, “Reduction of Structural Frequency Equations
,” AIAA J.
, 11
, p. 892
892
.2.
Paz
, M.
, 1982
, “Practical Reduction of Structural Eigenproblems
,” J. Struct. Eng.
, 109
, pp. 2591
–2599
.3.
Friswell
, M. I.
, Garvey
, S. D.
, and Penny
, J. E. T.
, 1995
, “Model Reduction Using Dynamic and Iterated IRS Techniques
,” J. Sound Vib.
, 186
, pp. 311
–323
.4.
Guyan
, R. J.
, 1965
, “Reduction of Stiffness and Mass matrices
,” AIAA J.
, 3
, p. 380
380
.5.
Suarez
, L. E.
, and Singh
, M. P.
, 1992
, “Dynamic Condensation Method for Structural Eigenvalue Analysis
,” AIAA J.
, 30
, pp. 1046
–1054
.6.
Qu
, Z. Q.
, and Fu
, Z. F.
, 1998
, “New Structural Dynamic Condensation Method for Finite Element Models
,” AIAA J.
, 36
, pp. 1320
–1324
.7.
Kane
, K.
, and Torby
, B. J.
, 1991
, “The Extended Modal Reduction Method Applied to Rotor Dynamic Problems
,” ASME J. Vibr. Acoust.
, 113
, pp. 79
–84
.8.
Glasgow
, D. A.
, and Nelson
, H. D.
, 1980
, “Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,” ASME J. Mech. Des.
, 102
, pp. 352
–359
.9.
Li
, D. F.
, and Gunter
, E. J.
, 1982
, “Component Mode Synthesis of Large Rotor Systems
,” ASME J. Eng. Power
, 104
, pp. 552
–560
.10.
Rajakumar
, C.
, and Rogers
, C. R.
, 1991
, “The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problems
,” Int. J. Numer. Methods Eng.
, 32
, pp. 1009
–1026
.11.
Manoj
, K. G.
, and Bhattacharya
, S. K.
, 1997
, “A Block Solver for Large, Unsymmetric, Sparse, Banded Matrices with Symmetric Profiles
,” Int. J. Numer. Methods Eng.
, 40
, pp. 3279
–3295
.12.
Chapra, S. c., and Canale, R. P., 1989, Numerical Methods for Engineers, McGraw-Hill, London.
13.
Dimentberg, F. M., 1961, Flexural Vibrations of Rotating Shafts, Butterworths, London.
14.
Gunter, E. J., Jr., 1966, “Dynamic Stability of Rotor Bearing Systems,” NASA SP-113.
15.
Zorzi
, E. S.
, and Nelson
, H. D.
, 1977
, “Finite Element Simulation of Rotor-Bearing Systems With Internal Damping
,” ASME J. Turbines Power
, 99
, Ser. A, pp. 71
–76
.16.
Nelson
, H. D.
, and McVaugh
, J. M.
, 1976
, “The Dynamics of Rotor-Bearing Systems Using Finite Elements
,” J. Eng. Ind.
, 98
, pp. 593
–600
.17.
Rao, J. S., 1996, Rotor Dynamics, 3rd Ed., New Age International (p) Ltd., New Delhi.
Copyright © 2002
by ASME
You do not currently have access to this content.