In this paper model reduction of an unsymmetric and damped structural system is presented using a two-sided dynamic condensation technique. The method is an iterative one and essentially utilizes orthonormalized complex eigenvectors of the unsymmetric system. The eigensolution of the reduced order model with specified master degrees-of-freedom is obtained by Lanczos algorithm. The model reduction procedure is further utilized in substructure synthesis and eigenvalue analysis of large size unsymmetric systems. Application of the condensation technique is illustrated via two example problems of rotor bearing systems.

1.
Kidder
,
R. L.
,
1973
, “
Reduction of Structural Frequency Equations
,”
AIAA J.
,
11
, p.
892
892
.
2.
Paz
,
M.
,
1982
, “
Practical Reduction of Structural Eigenproblems
,”
J. Struct. Eng.
,
109
, pp.
2591
2599
.
3.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
,
1995
, “
Model Reduction Using Dynamic and Iterated IRS Techniques
,”
J. Sound Vib.
,
186
, pp.
311
323
.
4.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass matrices
,”
AIAA J.
,
3
, p.
380
380
.
5.
Suarez
,
L. E.
, and
Singh
,
M. P.
,
1992
, “
Dynamic Condensation Method for Structural Eigenvalue Analysis
,”
AIAA J.
,
30
, pp.
1046
1054
.
6.
Qu
,
Z. Q.
, and
Fu
,
Z. F.
,
1998
, “
New Structural Dynamic Condensation Method for Finite Element Models
,”
AIAA J.
,
36
, pp.
1320
1324
.
7.
Kane
,
K.
, and
Torby
,
B. J.
,
1991
, “
The Extended Modal Reduction Method Applied to Rotor Dynamic Problems
,”
ASME J. Vibr. Acoust.
,
113
, pp.
79
84
.
8.
Glasgow
,
D. A.
, and
Nelson
,
H. D.
,
1980
, “
Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,”
ASME J. Mech. Des.
,
102
, pp.
352
359
.
9.
Li
,
D. F.
, and
Gunter
,
E. J.
,
1982
, “
Component Mode Synthesis of Large Rotor Systems
,”
ASME J. Eng. Power
,
104
, pp.
552
560
.
10.
Rajakumar
,
C.
, and
Rogers
,
C. R.
,
1991
, “
The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
,
32
, pp.
1009
1026
.
11.
Manoj
,
K. G.
, and
Bhattacharya
,
S. K.
,
1997
, “
A Block Solver for Large, Unsymmetric, Sparse, Banded Matrices with Symmetric Profiles
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
3279
3295
.
12.
Chapra, S. c., and Canale, R. P., 1989, Numerical Methods for Engineers, McGraw-Hill, London.
13.
Dimentberg, F. M., 1961, Flexural Vibrations of Rotating Shafts, Butterworths, London.
14.
Gunter, E. J., Jr., 1966, “Dynamic Stability of Rotor Bearing Systems,” NASA SP-113.
15.
Zorzi
,
E. S.
, and
Nelson
,
H. D.
,
1977
, “
Finite Element Simulation of Rotor-Bearing Systems With Internal Damping
,”
ASME J. Turbines Power
,
99
, Ser. A, pp.
71
76
.
16.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
, pp.
593
600
.
17.
Rao, J. S., 1996, Rotor Dynamics, 3rd Ed., New Age International (p) Ltd., New Delhi.
You do not currently have access to this content.