We consider the problem of determining the elastic field in an infinite elastic solid induced by an ellipsoidal inclusion with a distribution of eigenstrains. The particular type of distribution considered in the article is characterized by a polynomial in the Cartesian coordinates of the points of the inclusion. Eshelby showed that in such a situation the induced strain field within the inclusion is also characterized by a polynomial of the same order. However, the explicit expression for this polynomial seems to have not yet been reported in the literature. The present study fills this gap.

1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
A241
, pp.
376
396
.
2.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
,
A252
, pp.
561
569
.
3.
Eshelby, J. D., 1960, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics, 2, I. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, pp. 89–140.
4.
Walpole
,
L. J.
,
1967
, “
The Elastic Field of an Inclusion in an Anisotropic Medium
,”
Proc. R. Soc. London, Ser. A
,
300
, pp.
270
289
.
5.
Kinoshita
,
N.
, and
Mura
,
T.
,
1971
, “
Elastic Fields of Inclusions in Anisotropic Media
,”
Phys. Status Solidi A
,
5
, pp.
759
768
.
6.
Kinoshita
,
N.
, and
Mura
,
T.
,
1986
, “
An Ellipsoidal Inclusion With Polynomial Eigenstrains
,”
Q. Appl. Math.
,
XLIV
(
1
), pp.
195
199
.
7.
Asaro
,
R. J.
, and
Barnett
,
D. M.
,
1975
, “
The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion
,”
J. Mech. Phys. Solids
,
23
, pp.
77
83
.
8.
Mura
,
T.
, and
Kinoshita
,
N.
,
1978
, “
The Polynomial Eigenstrain Problem for an Anisotropic Ellipsoidal Inclusion
,”
Phys. Status Solidi A
,
48
, pp.
447
450
.
9.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, The Hague.
10.
Mura
,
T.
,
1988
, “
Inclusion Problems
,”
Appl. Mech. Rev.
,
41
(
1
), pp.
15
20
.
11.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam.
12.
Khachaturyan, A. G., 1983, Theory of Structural Transformations in Solids, John Wiley and Sons, New York.
13.
Markenscoff
,
X.
,
1998
, “
On the Shape of the Eshelby Inclusions
,”
J. Elast.
,
44
, pp.
163
166
.
14.
Markenscoff
,
X.
,
1998
, “
Inclusions With Constant Eigenstress
,”
J. Mech. Phys. Solids
,
46
, pp.
2297
2301
.
15.
Markenscoff
,
X.
,
1998
, “
Inclusions of Uniform Eigenstrains and Constant or Other Stress Dependence
,”
ASME J. Appl. Mech.
,
65
, pp.
863
866
.
16.
Lubarda
,
V. A.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
35
, No.
25
, pp.
3405
3411
.
17.
Ferrers
,
N. M.
,
1877
, “
On the Potentials of Ellipsoids, Ellipsoidal Shells, Elliptic Laminae and Elliptic Rings of Variable Densities
,”
Q. J. Pure Appl. Math.
,
14
(
1
), pp.
1
22
.
18.
Dyson
,
F. D.
,
1891
, “
The Potentials of Ellipsoids of Variable Densities
,”
Q. J. Pure Appl. Math.
,
XXV
, pp.
259
288
.
19.
Rahman
,
M.
,
2001
, “
On the Newtonian Potentials of Heterogeneous Ellipsoids and Elliptic Discs
,”
Proc. R. Soc. London, Ser. A
,
A457
(
2013
), pp.
2227
2250
.
20.
Natanson, I. P., 1967, Theory of Functions of a Real Variable, Frederick Ungar, New York.
21.
Mikata
,
Y.
, and
Nemat-Nasser
,
S.
,
1990
, “
Elastic Field due to a Dynamically Transforming Spherical Inclusion
,”
ASME J. Appl. Mech.
,
57
, pp.
845
849
.
22.
Mikata
,
Y.
, and
Nemat-Nasser
,
S.
,
1991
, “
Interaction of a Harmonic Wave With a Dynamically Transforming Inhomogeneity
,”
J. Appl. Phys.
,
70
, pp.
2071
2078
.
23.
Cheng
,
Z.-Q.
, and
Batra
,
R. C.
,
1999
, “
Exact Eshelby Tensor for a Dynamic Circular Cylindrical Inclusion
,”
ASME J. Appl. Mech.
,
66
, pp.
563
565
.
24.
Van Dyke
,
M.
,
1974
, “
Analysis and Improvement of Perturbation Series
,”
Q. J. Mech. Appl. Math.
,
XXVII, Pt. 4
, pp.
423
450
.
25.
Bell, R. J. T., 1959, An Elementary Treatise on Coordinate Geometry of Three Dimensions, Macmillan, London.
You do not currently have access to this content.