Graded finite elements are presented within the framework of a generalized isoparametric formulation. Such elements possess a spatially varying material property field, e.g. Young’s modulus E and Poisson’s ratio ν for isotropic materials; and principal Young’s moduli E11,E22, in-plane shear modulus G12, and Poisson’s ratio ν12 for orthotropic materials. To investigate the influence of material property variation, both exponentially and linearly graded materials are considered and compared. Several boundary value problems involving continuously nonhomogeneous isotropic and orthotropic materials are solved, and the performance of graded elements is compared to that of conventional homogeneous elements with reference to analytical solutions. Such solutions are obtained for an orthotropic plate of infinite length and finite width subjected to various loading conditions. The corresponding solutions for an isotropic plate are obtained from those for the orthotropic plate. In general, graded finite elements provide more accurate local stress than conventional homogeneous elements, however, such may not be the case for four-node quadrilateral (Q4) elements. The framework described here can serve as the basis for further investigations such as thermal and dynamic problems in functionally graded materials.

1.
Hirai, T., 1996, “Functionally Graded Materials,” Materials Science and Technology: Processing of Ceramics, Part 2, R. J. Brook, ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 17B, pp. 292–341.
2.
Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., and Ford, R. G., 1999, Functionally Graded Materials: Design, Processing, and Applications, Kluwer, MA.
3.
Suresh, S., and Mortensen, A., 1998, Fundamentals of Functionally Graded Materials, IOM Communications, London.
4.
Koizumi, M., 1993, “The concept of FGM,” Proceedings of the Second International Symposium on Functionally Gradient Materials, Ceramic Transactions, J. B. Holt et al., eds., Westerville, Ohio, The American Ceramic Society, 34, pp. 3–10.
5.
Pindera
,
M.-J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Thermal Barrier Coatings With Different Microstructural Scales
,”
J. Am. Ceram. Soc.
,
81
(
6
), pp.
1525
1536
.
6.
Tokita
,
M.
,
1999
, “
Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering
,”
Mater. Sci. Forum
,
308–311
, pp.
83
88
.
7.
Sampath
,
S.
,
Hermann
,
H.
,
Shimoda
,
N.
, and
Saito
,
T.
,
1995
, “
Thermal Spray Processing of FGMs
,”
M.R.S. Bull.
,
20
(
1
), pp.
27
31
.
8.
Kaysser
,
W. A.
, and
Ilschner
,
B.
,
1995
, “
FGM Research Activities in Europe
,”
M.R.S. Bull.
,
20
(
1
), pp.
22
26
.
9.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
, Jr.,
W. P.
,
1995
, “
Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
,
30
, pp.
2183
2193
.
10.
Lee
,
Y. D.
, and
Erdogan
,
F.
,
1995
, “
Residual/Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
,
69
, pp.
145
165
.
11.
Kurihara, K., Sasaki, K., and Kawarada, M., 1990, “Adhesion Improvement of Diamond Films,” Proceedings of the First International Symposium on Functionally Gradient Materials, M. Yamanouchi et al., eds., Tokyo, Japan.
12.
Jin
,
Z.-H.
, and
Paulino
,
G.H.
,
2001
, “
Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material
,”
Int. J. Fract.
,
107
(
1
), pp.
73
98
.
13.
Hasselman
,
D. P. H.
, and
Youngblood
,
G. E.
,
1978
, “
Enhanced Thermal Stress Resistance of Structural Ceramics With Thermal Conductivity Gradient
,”
J. Am. Ceram. Soc.
,
61
(
1–2
), pp.
49
52
.
14.
Horgan
,
C. O.
, and
Chan
,
A. M.
,
1999
, “
Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials
,”
J. Elast.
,
55
(
1
), pp.
43
59
.
15.
Carpenter
,
R. D.
,
Liang
,
W. W.
,
Paulino
,
G. H.
,
Gibeling
,
J. C.
, and
Munir
,
Z. A.
,
1999
, “
Fracture Testing and Analysis of a Layered Functionally Graded Ti/TiB Beam in 3-Point Bending
,”
Mater. Sci. Forum
,
308–311
, pp.
837
842
.
16.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1997
, “
Mode I Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Eng. Sci.
,
35
(
9
), pp.
869
883
.
17.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1999
, “
The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Fract.
,
98
, pp.
243
261
.
18.
Paulino
,
G. H.
, and
Jin
,
Z.-H.
,
2000
, “
Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
284
293
.
19.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
,
1999
, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
,
30
, pp.
777
832
.
20.
Pindera
,
M.-J.
, and
Dunn
,
P.
,
1997
, “
Evaluation of the Higher-Order Theory for Functionally Graded Materials Via the Finite-Element Method
,”
Composites, Part B
,
28
(
1/2
), pp.
109
119
.
21.
Goldberg
,
R. K.
, and
Hopkins
,
D. A.
,
1995
, “
Thermal Analysis of a Functionally Graded Material Subject to a Thermal Gradient Using the Boundary Element Method
,”
Compos. Methods Appl. Mech. Eng.
,
5
(
7
), pp.
793
806
.
22.
Sutradhar
,
S.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
,
2002
, “
Transient Heat Conduction in Homogeneous and Non-Homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method
,”
Eng. Anal. Bound. Elem.
,
26
(
2
), pp.
119
132
.
23.
Eischen
,
J. W.
,
1987
, “
Fracture of Nonhomogeneous Materials
,”
Int. J. Fract.
,
34
, pp.
3
22
.
24.
Williamson
,
R. L.
,
Rabin
,
B. H.
, and
Drake
,
J. T.
,
1993
, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces, Part I: Model Description and Geometric Effects
,”
J. Appl. Phys.
,
74
(
2
), pp.
1310
1320
.
25.
Drake
,
J. T.
,
Williamson
,
R. L.
, and
Rabin
,
B. H.
,
1993
, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces, Part II: Interface Optimization for Residual Stress Reduction
,”
J. Appl. Phys.
,
74
(
2
), pp.
1321
1326
.
26.
Giannakopoulos
,
A. E.
,
Suresh
,
S.
,
Finot
,
M.
, and
Olsson
,
M.
,
1995
, “
Elastoplastic Analysis of Thermal Cycling: Layered Materials With Compositional Gradients
,”
Acta Mater.
,
43
(
4
), pp.
1335
1354
.
27.
Gu
,
P.
,
Dao
,
M.
, and
Asaro
,
R. J.
,
1999
, “
A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
101
108
.
28.
Dao
,
M.
,
Gu
,
P.
,
Maewal
,
A.
, and
Asaro
,
R. J.
,
1997
, “
A Micromechanical Study of Residual Stresses in Functionally Graded Materials
,”
Acta Mater.
,
45
(
8
), pp.
3265
3276
.
29.
Anlas
,
G.
,
Santare
,
M. H.
, and
Lambros
,
J.
,
2000
, “
Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Fract.
,
104
, pp.
131
143
.
30.
Santare
,
M. H.
, and
Lambros
,
J.
,
2000
, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
,
67
, pp.
819
822
.
31.
Kim
,
J.-H.
, and
Paulino
,
G. H.
,
2002
, “
Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
,
53
(
8
), pp.
1903
1935
.
32.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1997
, “
The Surface Crack Problem for a Plate with Functionally Graded Properties
,”
ASME J. Appl. Mech.
,
64
, pp.
449
456
.
33.
Paulino, G. H., and Kim, J.-H., “The Weak Patch Test for Nonhomogeneous Materials Modeled With Graded Finite Elements” (submitted for publication).
34.
Hughes, T. J. R., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ.
35.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
, Jr.,
R. H.
,
2002
, “
Finite Element Evaluation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
,”
ASME J. Appl. Mech.
,
69
, pp.
370
-
379
.
36.
Kim, J.-H., “Quasi-Static Crack Propagation in Functionally Graded Materials,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
37.
Hibbitt, Karlson, & Sorensen, Inc., 2000, ABAQUS/Standard User’s Manual, Vol. II, Pawtucket, RI, Version 6.1 (p. 14.1.1-14).
38.
Gullerud, A. S., Koppenhoefer, K. C., Roy, A., Roychowdhury, S., and Dodds, Jr., R. H., 2001, WARP3D-Release 13.11, University of Illinois, UILU-ENG-95-2012.
You do not currently have access to this content.